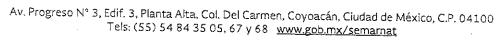


Oficio N° SGPA/DGGFS/712/0789/17

Ciudad de México, a 9 de marzo de 2017

"2017, Año del Centenario de la Promulgación de la Constitución Política de los Estados Unidos Mexicanos"


ING. MARCO ANTONIO LOYA IZAGUIRRE RESIDENTE REGIONAL PENINSULAR DE LA COMISIÓN FEDERAL DE ELECTRICIDAD

Asunto: Se resuelve la solicitud de autorización de cambio de uso de suelo en terrenos forestales y el impacto ambiental a través del trámite unificado modalidad A por una superficie de 0.6576 hectáreas, para el desarrollo del proyecto denominado Construcción de los Sistemas de Radio Repetidor para las Líneas de Transmisión Escárcega Potencia — Xpujil y Xpujil — Xul Ha, ubicado en los municipios de Calakmul en el estado de Campeche y Othón P. Blanco en el estado de Quintana Roo.

Visto para resolver el expediente instaurado a nombre de la Residencia Regional Peninsular de la Comisión Federal de Electricidad, con motivo de la solicitud de autorización del cambio de uso de suelo en terrenos forestales y de impacto ambiental por una superficie de 0.6576 hectáreas, para el desarrollo del proyecto denominado **Construcción de los Sistemas de Radio Repetidor para las Líneas de Transmisión Escárcega Potencia** — **Xpujil y Xpujil — Xul Ha**, ubicado en los municipios de Calakmul en el estado de Campeche y Othón P. Blanco en el estado de Quintana Roo, y

RESULTANDO

- I. Que con fecha 22 de diciembre del 2010 se publicó en el Diario Oficial de la Federación el Acuerdo por el que se expiden los lineamientos y procedimientos para solicitar en un trámite único ante la Secretaría de Medio Ambiente y Recursos Naturales las autorizaciones en materia de impacto ambiental y en materia forestal que se indican y se asignan las atribuciones correspondientes en los servidores públicos que se señalan (en lo sucesivo el **Acuerdo**), mediante el cual se establece el procedimiento para el trámite unificado de cambio de uso de suelo forestal modalidad A, para solicitar las autorizaciones de proyectos que requieren ser autorizados para el cambio de uso de suelo forestal.
- II. Que mediante oficio N° N22F0-0479/16 de fecha 12 de julio del 2016, recibido en esta Dirección General de Gestión Forestal y Suelos el 15 de julio del 2016, el Ing. Marco Antonio Loya Izaguirre, en su carácter de Residente Regional Peninsular de la Comisión Federal de Electricidad, presentó ante esta Dirección General de Gestión Forestal y de Suelos (DGGFS) de la Secretaría de Medio Ambiente y Recursos Naturales (SEMARNAT), la solicitud de autorización para el cambio de uso de suelo forestal y de impacto ambiental a través del trámite unificado modalidad A, por una superficie de 0.6576 hectáreas, para el desarrollo del proyecto denominado

SEMARNAT SECRETARÍA DE MEDIO AMBIENTE Y RECURSOS NATURALES

SUBSECRETARÍA DE GESTIÓN PARA LA PROTECCIÓN AMBIENTAL DIRECCIÓN GENERAL DE GESTIÓN FORESTAL Y DE SUELOS

Oficio N° SGPA/DGGFS/712/0789/17

Construcción de los Sistemas de Radio Repetidor para las Líneas de Transmisión Escárcega Potencia — Xpujil y Xpujil — Xul Ha, ubicado en los municipios de Calakmul en el estado de Campeche y Othón P. Blanco en el estado de Quintana Roo, adjuntando para tal efecto la siguiente documentación:

- a. Original del Documento Técnico Unificado modalidad A (DTU-A) y su respaldo en digital.
- b. Resumen del contenido del Documento Técnico Unificado modalidad A (DTU-A) en formato electrónico e impreso.
- c. Copia certificada del Acta de Asamblea de fecha 18 de octubre del 2015, mediante la cual el Ejido Hopelchen en el estado de Campeche, autoriza por unanimidad de votos a la Comisión Federal de Electricidad (CFE), la realización de los trabajos preliminares consistentes en estudios de topografía, mecánica de suelos, ambientales, etc. y la construcción de la obra pública L.T. Escárcega Xpujil (actualmente denominado L.T. Escárcega Potencia— Xpujil), sobre una superficie de 600 metros cuadrados que alojará la torre y caseta de radiocomunicaciones y en 681.39 metros cuadrados que alojará el derecho de vía del camino de acceso, así como para que la CFE gestione a su nombre y titularidad ante la Secretaría de Medio Ambiente y Recursos Naturales (SEMARNAT), la autorización de cambio de uso de suelo en terrenos forestales.
- d. Copia certificada del Acta de Asamblea de fecha 25 de octubre del 2015, mediante la cual el Ejido Ramonal Río Hondo, municipio de Othón P. Blanco en el estado de Quintana Roo, aprobó por unanimidad de votos, la solicitud de la Comisión Federal de Electricidad (CFE) para la ejecución de los trabajos preliminares sobre la franja que alojará el área de instalación del sistema de radio repetidor y el camino de acceso en las tierras de uso común del ejido, así como para que la CFE gestione a su nombre y titularidad, ante la Secretaría de Medio Ambiente y Recursos Naturales (SEMARNAT), la autorización de cambio de uso de suelo en terrenos forestales.
- e. Copia certificada del escrito de fecha 15 de octubre del 2015, mediante el cual el C. propietario del predio rústico denominado "Las Delicias", ubicado en el municipio de Calakmul en el estado de Campeche, representado por su Apoderado Legal, el C. José Gilberto Silván Bastiani, autoriza a la Comisión Federal de Electricidad para que realice las actividades que impliquen el cambio de uso de suelo en terrenos forestales en la superficie que alojará el sitio de la antena y su caseta (600 m²), así

Oficio N° SGPA/DGGFS/712/0789/17

como el camino de acceso (1,765.32 m²) y para que gestione a su nombre y titularidad, ante la Secretaría de Medio Ambiente y Recursos Naturales (SEMARNAT), la autorización de cambio de uso de suelo en terrenos forestales, con el objeto de dar cumplimiento a lo establecido en la Ley General de Desarrollo Forestal Sustentable.

f.	Copia certificada de la Escritura Número

- g. Comprobante de pago de derechos por \$60,140.00 (Sesenta mil ciento cuarenta pesos 00/100 M.N.), por concepto de recepción, evaluación y dictamen del Documento Técnico Unificado modalidad A (DTU-A) y, en su caso, la autorización del cambio de cambio de uso de suelo forestal y de impacto ambiental, de fecha 11 de julio de 2016, conforme a lo establecido en el artículo 194-H de la Ley Federal de Derechos.
- h. Copia certificada de la Escritura que contiene el Poder General para Actos de Administración y Especial para Actos de Administración que otorga la Comisión Federal de Electricidad, representada por el Ingeniero Benjamín Granados Domínguez, en su carácter de Director de Proyectos de Inversión Financiada a favor del Ingeniero Marco Antonio Loya Izaguirre, Residente Regional de Construcción de Proyectos de Transmisión y Transformación Peninsular de la Comisión Federal de Electricidad.
- i. Copia simple de la credencial para votar a nombre del C. Marco Antonio Loya Izaguirre, expedida por el Instituto Nacional Electoral.
- j. Formato de solicitud FF-SEMARNAT-031. Solicitud del Trámite Unificado de Cambio de Uso de Suelo Forestal Modalidad A de fecha 12 de julio de 2016, debidamente firmada por Marco Antonio Loya Izaguirre.
- k. Copia simple del oficio N° SEMARNAT-SGPA-AR-1615 de fecha 6 de septiembre del 2010, correspondiente a la Inscripción en el Registro Forestal Nacional del quien es el responsable de la elaboración del
- III. Que en cumplimiento del artículo 37 del Reglamento en Materia de Impacto Ambiental, el 21 de julio del 2016, la Secretaría de Medio Ambiente y Recursos Naturales publicó en su portal electrónico, a través de la Gaceta Ecológica, el listado

Documento Técnico Unificado modalidad A (DTU-A).

Oficio N° SGPA/DGGFS/712/0789/17

de proyectos sometidos al procedimiento de Evaluación de Impacto Ambiental, dentro de las cuales se incluyó el proyecto denominado **Construcción de los Sistemas de Radio Repetidor para las Líneas de Transmisión Escárcega Potencia – Xpujil y Xpujil – Xul Ha**, ubicado en los municipios de Calakmul en el estado de Campeche y Othón P. Blanco en el estado de Quintana Roo.

- IV. Que mediante oficio N° N22F0-0510/2016 de fecha 25 de julio del 2016, recibido en esta Dirección General de Gestión Forestal y de Suelos el 26 de julio de 2016, la Residencia Regional Peninsular de la Comisión Federal de Electricidad, en cumplimiento a lo dispuesto en el artículo 34, fracción I de la Ley General del Equilibrio Ecológico y la Protección al Ambiente, remitió los ejemplares de los periódicos de amplia circulación de nombre Por Esto Quintana Roo y Diario Independiente Tribuna, Campeche, los cuales contienen la publicación del extracto del Documento Técnico Unificado modalidad A del proyecto denominado Construcción de los Sistemas de Radio Repetidor para las Líneas de Transmisión Escárcega Potencia Xpujil y Xpujil Xul Ha, ubicado en los municipios de Calakmul en el estado de Campeche y Othón P. Blanco en el estado de Quintana Roo.
- V. Que mediante oficio N° SGPA/DGGFS/712/2031/16 de fecha 1 de agosto del 2016, se requirió el apoyo de la Delegación Federal de la Secretaría de Medio Ambiente y Recursos Naturales en el estado de Quintana Roo, para que solicitara la opinión del Consejo Estatal Forestal respecto a la viabilidad de la solicitud de autorización en materia forestal y de impacto ambiental para el cambio de uso de suelo en terrenos forestales para el desarrollo del proyecto que nos ocupa, así como llevar a cabo la visita técnica a los predios objeto de la solicitud, en cumplimiento de lo dispuesto por los artículos 117 de la Ley General de Desarrollo Forestal Sustentable y 122 fracciones III, IV y V de su Reglamento, debiéndose verificar lo siguiente:
- Que la superficie, ubicación y el tipo de vegetación forestal que se pretende afectar en el estado de Quintana Roo, corresponda con lo manifestado en el Documento Técnico Unificado Modalidad A, en caso de que la información difiera o no corresponda, precisar lo necesario.
- Que las coordenadas UTM que delimitan el área sujeta a cambio de uso de suelo en terrenos forestales en el estado de Quintana Roo, correspondan a las manifestadas en el Documento Técnico Unificado Modalidad A presentadas para el proyecto.
- Que no exista remoción de vegetación forestal que haya implicado cambio de uso de suelo en terrenos forestales en las áreas solicitadas, en caso contrario indicar la ubicación y superficie involucrada.

- Que los volúmenes por especie de las materias primas forestales que serán removidas por el cambio de uso de suelo en terrenos forestales para el predio en el estado de Quintana Roo, corresponda con la estimación que se presenta en el Documento Técnico Unificado Modalidad A.
- Que no se afecten cuerpos de agua permanentes y recursos asociados por la ejecución del proyecto, en caso contrario informar el nombre y la ubicación de éstos.
- Que los servicios ambientales que se verán afectados con la implementación y operación del proyecto, correspondan con lo manifestado en el Documento Técnico Unificado Modalidad A, si hubiera incongruencias, manifestar lo necesario.
- Precisar el estado de conservación del tipo de vegetación forestal que se pretende afectar, si corresponde a vegetación primaria o secundaria y si ésta se encuentra en proceso de recuperación, en proceso de degradación o en buen estado de conservación.
- Que la superficie donde se ubicará el proyecto no haya sido afectada por algún incendio forestal, en caso contrario, referir la superficie involucrada, su ubicación geográfica y posible año de ocurrencia.
- Realizar un recorrido para verificar si existen otras especies de flora que no hayan sido reportadas en el Documento Técnico Unificado Modalidad A dentro del área requerida para el cambio de uso de suelo en terrenos forestales, en su caso, reportar el nombre común y científico de éstas.
- Si existen especies de flora y fauna silvestres en alguna categoría de riesgo de la NOM-059-SEMARNAT-2010, que no hayan sido consideradas en el Documento Técnico Unificado Modalidad A, en su caso, reportar el nombre común y científico de éstas.
- Si las medidas de prevención y mitigación de los impactos sobre los recursos forestales, agua, suelo y biodiversidad, contempladas para el desarrollo del proyecto son las adecuadas o, en su caso, cuáles serían las que propone el personal técnico de esa Delegación Federal a su cargo.
- Si en el área donde se llevará a cabo el proyecto existen o se generarán tierras frágiles, indicar en su caso, su ubicación y las acciones necesarias para su protección.
- Si el desarrollo del proyecto es factible ambientalmente, teniendo en consideración la aplicación de las medidas de prevención y mitigación propuestas en el Documento Técnico Unificado Modalidad A.
- Verificar y reportar el número de individuos de las especies de flora del sitio de muestreo N° 2 de la cuenca donde se ubicará el proyecto, indicando a través de un cuadro comparativo, si corresponde con lo reportado en el Documento Técnico Unificado Modalidad A.

SUE

SUBSECRETARÍA DE GESTIÓN PARA LA PROTECCIÓN AMBIENTAL DIRECCIÓN GENERAL DE GESTIÓN FORESTAL Y DE SUELOS

Oficio N° SGPA/DGGFS/712/0789/17

Las coordenadas UTM de los sitios de muestreo son:

N° DE SITIO	TIPO DE VEGETACIÓN	an ann an	Y
	Selva mediana		
2	subperennifolia	260172	2047011

Para el caso del área sujeta a cambio de uso de suelo del terreno forestal y dado que se realizó un censo en la totalidad de los polígonos por afectar, deberá de verificar y reportar el número de individuos de las especies de flora del polígono del Sitio Repetidor N° 1, indicando a través de un cuadro comparativo, si corresponde con lo reportado en el Documento Técnico Unificado Modalidad A.

Los datos del sitio son los siguientes:

N° DE SITIO	TIPO DE VEGETACIÓN	SUPERFICIE (M²)
Sitio	Selva mediana	
repetidor 1	subperennifolia	2,929.94

- VI. Que mediante oficio N° SGPA/DGGFS/712/2032/16 de fecha 1 de agosto del 2016, se requirió el apoyo de la Delegación Federal de la Secretaría de Medio Ambiente y Recursos Naturales en el estado de Campeche, para que solicitara la opinión del Consejo Estatal Forestal respecto a la viabilidad de la solicitud de autorización en materia forestal y de impacto ambiental para el cambio de uso de suelo en terrenos forestales del proyecto que nos ocupa, así como llevar a cabo la visita técnica a los predios objeto de la solicitud, en cumplimiento de lo dispuesto por los artículos 117 de la Ley General de Desarrollo Forestal Sustentable y 122 fracciones III, IV y V de su Reglamento, debiéndose verificar los siguiente:
- Que la superficie, ubicación y el tipo de vegetación forestal que se pretende afectar en el estado de Campeche, corresponda con lo manifestado en el Documento Técnico Unificado Modalidad A, en caso de que la información difiera o no corresponda, precisar lo necesario.
- Que las coordenadas UTM que delimitan las áreas sujetas a cambio de uso de suelo en terrenos forestales en los predios ubicados en el estado de Campeche, correspondan a las manifestadas en el Documento Técnico Unificado Modalidad A.
- Que no exista remoción de vegetación forestal que haya implicado cambio de uso de suelo en terrenos forestales en las áreas solicitadas para cambio de uso de suelo en el estado de Campeche, en caso contrario indicar la ubicación y superficie involucrada.
- Que los volúmenes por especie de las materias primas forestales que serán removidas por el cambio de uso de suelo en terrenos forestales para los predios en el estado de

Oficio N° SGPA/DGGFS/712/0789/17

Campeche, corresponda con la estimación que se presenta en el Documento Técnico Unificado Modalidad A.

- Que no se afecten cuerpos de agua permanentes y recursos asociados por la ejecución del proyecto, en caso contrario informar el nombre y la ubicación de éstos.
- Que los servicios ambientales que se verán afectados con la implementación y operación del proyecto, correspondan con lo manifestado en el Documento Técnico Unificado Modalidad A, si hubiera incongruencias, manifestar lo necesario.
- Precisar el estado de conservación del tipo de vegetación forestal que se pretende afectar, si corresponde a vegetación primaria o secundaria y si ésta se encuentra en proceso de recuperación, en proceso de degradación o en buen estado de conservación.
- Que la superficie donde se ubicará el proyecto no haya sido afectada por algún incendio forestal, en caso contrario, referir la superficie involucrada, su ubicación geográfica y posible año de ocurrencia.
- Realizar un recorrido para verificar si existen otras especies de flora que no hayan sido reportadas en el Documento Técnico Unificado Modalidad A dentro de las áreas requeridas para el cambio de uso de suelo en terrenos forestales, en su caso, reportar el nombre común y científico de éstas.
- Si existen especies de flora y fauna silvestres en alguna categoría de riesgo de la NOM-059-SEMARNAT-2010, que no hayan sido consideradas en el Documento Técnico Unificado Modalidad A, en su caso, reportar el nombre común y científico de éstas.
- Si las medidas de prevención y mitigación de los impactos sobre los recursos forestales, agua, suelo y biodiversidad, contempladas para el desarrollo del proyecto son las adecuadas o, en su caso, cuáles serían las que propone el personal técnico de esa Delegación Federal a su cargo.
- Si en el área donde se llevará a cabo el proyecto existen o se generarán tierras frágiles, indicar en su caso, su ubicación y las acciones necesarias para su protección.
- Si el desarrollo del proyecto es factible ambientalmente, teniendo en consideración la aplicación de las medidas de prevención y mitigación propuestas en el Documento Técnico Unificado Modalidad A.
- Verificar y reportar el número de individuos de las especies de flora del sitio de muestreo N° 1 de la cuenca donde se ubicará el proyecto, indicando a través de un cuadro comparativo, si corresponde con lo reportado en el Documento Técnico Unificado Modalidad A.

Oficio N° SGPA/DGGFS/712/0789/17

Las coordenadas UTM de los sitios de muestreo son:

N° DE SITIO	TPO DE VEGETACIÓN	×	Y
,	Selva baja		
1	subcaducifolia	284925	2042353

Para el caso del área sujeta a cambio de uso de suelo del terreno forestal y dado que se realizó un censo en la totalidad de los polígonos por afectar, deberá de verificar y reportar el número de individuos de las especies de flora del polígono del Sitio Repetidor N° 3, indicando a través de un cuadro comparativo, si corresponde con lo reportado en el Documento Técnico Unificado Modalidad A.

Los datos del sitio son los siguientes:

N° DE SITIO	TPO DE VEGETACIÓN	SUPERFICIE (M²)
Sitio	Selva baja	
repetidor 3	subcaducifolia	1,281.39

VII. Que mediante oficio N° 03/ARRN/1790/16 de fecha 4 de octubre del 2016, recibido en esta Dirección General de Gestión Forestal y de Suelos el día 7 de octubre del 2016, la Delegación Federal de esta Secretaría de Medio Ambiente y Recursos Naturales en el estado de Quintana Roo, remitió el informe de la visita técnica realizada a los sitios del proyecto el día 19 de septiembre del 2016, así como copia de la notificación donde se solicita la opinión del Consejo Estatal Forestal y copia del Acta de la Vigésima Tercera Sesión del Comité Técnico para el Cambio de Uso de Suelo en Terrenos Forestales de fecha 6 de septiembre del 2016, respecto a la viabilidad para el desarrollo del proyecto denominado **Construcción de los Sistemas de Radio Repetidor para las Líneas de Transmisión Escárcega Potencia – Xpujil y Xpujil – Xul Ha**, ubicado en los municipios de Calakmul en el estado de Campeche y Othón P. Blanco en el estado de Quintana Roo.

De la visita técnica:

La superficie y los tipos de vegetación si corresponde, siendo una superficie de 2,929.94 metros cuadrados aproximadamente de los dos predios que se ubican en el municipio de Othón P. Blanco, Quintana Roo, en el cual pretenden desarrollar el proyecto en el tramo del municipio de Othón P. Blanco, Quintana Roo, el tipo de vegetación de acuerdo a la visita realizada en el área de afectación del derecho de vía, se tienen principalmente Selva Mediana Subperennifolia en proceso de recuperación y su ubicación geográfica la cual se ubica dentro del municipio de Othón P. Blanco, Quintana Roo.

SECRETARÍA DE
MEDIO AMBIENTE
Y RECURSOS NATURALES

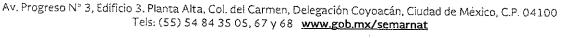
- Se realizó un recorrido dentro de las áreas cubiertas de vegetación de los predios en el cual se pretende desarrollar el proyecto denominado "Construcción de los Sistemas de Radio Repetidor para las Líneas de Transmisión Escárcega Potencia Xpujil Xul Ha del Municipio de Othón P. Blanco, Quintana Roo", se tomaron las lecturas de cuatro vértices de la poligonal de la superficie de cambio de uso de suelo, los cuales se encuentran ubicados entre las coordenadas geográficas UTM (WGS-84): Vértice 1: X-031068, Y-2043781, Vértice 2 X-0310678 Y-2043764, Vértice 3 X-0310709, Y-2043766 y Vértice 4 X-0310710, Y-2043782, mismas que al ser cotejadas con las que presentan en el Documento, éstas presentan una pequeña diferencia, ésto debido a los equipos geoposicionadores utilizados, las cuales si corresponden.
- Durante el recorrido de las superficies cubiertas de vegetación de las áreas solicitadas de la propuesta en el cual se pretende desarrollar el proyecto denominado "Construcción de los Sistemas de Radio Repetidor para las Líneas de Transmisión Escárcega Potencia-Xpujil y Xpujil-Xul Ha", no se observó remoción de vegetación, ni de obras relacionada con el proyecto y que pudiera ser motivo de la cancelación del trámite de cambio de uso de suelo.
- En lo que corresponde a la información cotejada y recabada en el sitio de muestreo con respecto a cada individuo referente al diámetro, altura y especie, ésta al momento de su verificación corresponde con la información levantada en las fichas de muestreo, lo cual se considera confiable dicha información y procesamiento de datos con respecto a los volúmenes a remover.
- Durante el recorrido de las superficies verificadas, no se observó cuerpos de agua permanentes en los predios que serán afectados con el cambio de uso de suelo en terrenos forestales propuesto.
- Los servicios ambientales que se verán afectados por la implementación del proyecto denominado "Línea de Transmisión Xpujil Xul Ha, (Segunda Fase) en el tramo del Municipio de Othón P. Blanco, Quintana Roo" son como se manifiestan en el Documento Unificado Modalidad A siendo los siguientes: Provisión del agua en calidad y cantidad, captura de carbono y componentes naturales, generación de oxígeno, amortiguamiento a los impactos de fenómenos naturales, modulación o regulación climática, protección y recuperación de suelos (erosión), entre otros.
- Durante el recorrido de la superficie y los sitios que se verificaron, se observó que la vegetación se encuentra caracterizada como vegetación primaria de selva mediana subperennifolia y en buen estado de conservación.

- Durante el recorrido dentro de las áreas cubiertas de vegetación correspondientes a las superficies propuestas, no se observaron vestigios de incendios forestales que hayan ocurrido recientemente y/o en años anteriores.
- Durante la verificación en lo que corresponde al censo levantado fueron registradas todas las especies que se encuentran, no se observó alguna especie que no se haya registrado dentro del censo, mismo que son los que se encuentran en el área sujeta a cambio de uso de suelo.
- En la visita dentro de las áreas cubiertas de vegetación y del censo verificado dentro de los predios sujeto a cambio de uso de suelo, no se observó especies consideradas bajo estatus de conservación dentro de la Norma Oficial Mexicana 059-SEMARNAT-2010, que no se hayan reportado en el Documento Técnico Unificado Modalidad A.
- Las medidas de prevención y mitigación de los impactos realizados sobre los recursos forestales contempladas para el desarrollo del proyecto en los predios propuestos, se considera que si son las adecuadas para poder desarrollar el proyecto y que siempre y cuando las cumplan.
- El área aledaña y sujeta a cambio de uso de suelo, no está considerada dentro del concepto de tierras frágiles, porque independientemente de que se remueva la cobertura forestal existente, en el área donde se construirá la Construcción de los Sistemas de Radio Repetidor para las Líneas de Transmisión Escárcega Potencia Xpujil y Xpujil Xul Ha se estabilizará el suelo, evitando los riesgos potenciales de erosión y por lo tanto de arrastre de partículas a otras áreas, logrando con ello evitar la degradación y pérdida de su capacidad productiva natural y la de su entorno, manteniendo así un equilibrio con la demás vegetación presente en el ecosistema y sin que exista una sinergia de impactos hacia el ecosistema.
- Se considera factible el proyecto a la necesidad de la energía eléctrica, siempre que cumpla con las medidas propuestas por el promovente, para la prevención y mitigación de los impactos que se generen al ecosistema por el desarrollo del proyecto.
- Se corroboró el sitio del repetidor N° 1 de muestreo y sí coincidió el número de individuos que levantaron en su ficha al momento de la verificación correspondiente. En lo que respecta al sitio de cuenca, no se pudo corroborar debido que se encuentra en el estado de Campeche y fuera de nuestra jurisdicción.

Oficio N° SGPA/DGGFS/712/0789/17

Número de individuos reportados en el sitio N°1 y encontrados al momento de la verificación.

No. de sitio	No. de individuos del censo	No. de individuos al momento de la verificación
Sitio repetidor 1	425	425


Después de haber realizado el recorrido dentro del área en el cual se pretende
desarrollar el proyecto denominado "Construcción de los Sistemas de Radio
Repetidor para las Líneas de Transmisión Escárcega Potencia — Xpujil y
Xpujil — Xul Ha" donde se realizó el cotejo con las fichas de campo de la
información de los sitios de muestreo que se establecieron para realizar el cálculo
dasométrico de la vegetación a remover, tipo de vegetación del área destinada
para realizar el cambio de uso del suelo en terrenos forestales, dicha información
se considera confiable.

De la opinión del Consejo Estatal Forestal.

- Mediante Acta de la Vigésima Tercera Sesión del Comité Técnico para el Cambio de Uso de Suelo en Terrenos Forestales, se emitió <u>opinión favorable</u> para el proyecto "Construcción de los Sistemas de Radio Repetidor para las Líneas de Transmisión Escárcega Potencia — Xpujil y Xpujil — Xul Ha".
- VIII. Que mediante oficio N° SEMARNAT/SGPA/UARRN/01072/16 de fecha 24 de octubre del 2016, recibido en esta Dirección General de Gestión Forestal y de Suelos el día 7 de noviembre del 2016, la Delegación Federal de esta Secretaría de Medio Ambiente y Recursos Naturales en el estado de Campeche, remitió el informe de la visita técnica realizada a los sitios del proyecto el día 29 de septiembre del 2016, así como copia de la notificación donde se solicita la opinión del Consejo Estatal Forestal y copia de la minuta de la reunión del Comité de Normatividad y Regulación Forestal del Consejo Estatal Forestal de fecha 12 de septiembre del 2016, respecto a la viabilidad para el desarrollo del proyecto denominado Construcción de los Sistemas de Radio Repetidor para las Líneas de Transmisión Escárcega Potencia Xpujil y Xpujil Xul Ha, ubicado en los municipios de Calakmul en el estado de Campeche y Othón P. Blanco en el estado de Quintana Roo.

De la visita técnica:

 Que la superficie, ubicación y el tipo de vegetación forestal que se pretende afectar en el estado de Campeche, corresponda con lo manifestado en el Documento Técnico Unificado Modalidad A, en caso de que la información difiera o no corresponda, precisar lo necesario, con respecto a este punto se precisa que la información es correcta.

- Que las coordenadas UTM que delimitan las áreas sujetas a cambio de uso de suelo en terrenos forestales en los predios ubicados en el estado de Campeche, correspondan a las manifestadas en el Documento Técnico Unificado Modalidad A, la información si corresponde a lo manifestado en el Documento Técnico Unificado modalidad A.
- Que no exista remoción de vegetación forestal que haya implicado cambio de uso de suelo en terrenos forestales en las áreas solicitadas para cambio de uso de suelo en el estado de Campeche, en caso contrario indicar la ubicación y superficie involucrada, no existe inicio de obra o remoción de vegetación.
- Que los volúmenes por especie de las materias primas forestales que serán removidas por el cambio de uso de suelo en terrenos forestales para los predios en el estado de Campeche, corresponda con la estimación que se presenta en el Documento Técnico Unificado Modalidad A, si corresponden.
- Que no se afecten cuerpos de agua permanentes y recursos asociados por la ejecución del proyecto, en caso contrario informar el nombre y la ubicación de éstos, no se afectará cuerpos de agua.
- Que los servicios ambientales que se verán afectados con la implementación y operación del proyecto, correspondan con lo manifestado en el Documento Técnico Unificado Modalidad A, si hubiera incongruencias, manifestar lo necesario, si corresponden a la información en el Documento Técnico Unificado Modalidad A.
- Precisar el estado de conservación del tipo de vegetación forestal que se pretende afectar, si corresponde a vegetación primaria o secundaria y si ésta se encuentra en proceso de recuperación, en proceso de degradación o en buen estado de conservación, la información que se presenta si corresponde a lo manifestado.
- Que la superficie donde se ubicará el proyecto no haya sido afectada por algún incendio forestal, en caso contrario, referir la superficie involucrada, su ubicación geográfica y posible año de ocurrencia, en base a la visita técnica no se detectó algún daño por incendio.
- Realizar un recorrido para verificar si existen otras especies de flora que no hayan sido reportadas en el Documento Técnico Unificado Modalidad A dentro de las áreas requeridas para el cambio de uso de suelo en terrenos forestales, en su caso, reportar el nombre común y científico de éstas, la información es la correcta del Documento Técnico Unificado Modalidad A.
- Si existen especies de flora y fauna silvestres en alguna categoría de riesgo de la NOM-059-SEMARNAT-2010, que no hayan sido consideradas en el Documento Técnico Unificado Modalidad A, en su caso, reportar el nombre común y científico de éstas, no se detectó otra especie que esté en la NOM-059-SEMARNAT-2010.

Oficio N° SGPA/DGGFS/712/0789/17

- Si las medidas de prevención y mitigación de los impactos sobre los recursos forestales, agua, suelo y biodiversidad, contempladas para el desarrollo del proyecto son las adecuadas o, en su caso, cuáles serían las que propone el personal técnico de esa Delegación Federal a su cargo, si son las correctas.
- Si en el área donde se llevará a cabo el proyecto existen o se generarán tierras frágiles, indicar en su caso, su ubicación y las acciones necesarias para su protección, no se consideran que existan, pero se considera realizar actividades correspondientes para evitarlos.
- Si el desarrollo del proyecto es factible ambientalmente, teniendo en consideración la aplicación de las medidas de prevención y mitigación propuestas en el Documento Técnico Unificado Modalidad A, es factible.
- Verificar y reportar el número de individuos de las especies de flora del sitio de muestreo N° 1 de la cuenca donde se ubica el proyecto, indicando a través de un cuadro comparativo, si corresponde con lo reportado en el Documento Técnico Unificado Modalidad A, para el caso del área sujeta a cambio de uso de suelo del terreno forestal y dado que se realizó un censo en la totalidad de los polígonos por afectar, deberá de verificar y reportar el número de individuos de las especies de flora del polígono del Sitio Repetidor N° 3, indicando a través de un cuadro comparativo, si corresponde con lo reportado en el Documento Técnico Unificado Modalidad A.

De la opinión del Consejo Estatal Forestal.

- Mediante Minuta de Fecha 12 de septiembre de 2016, el Comité emitió opinión favorable, condicionada a que solvente las observaciones generadas durante el análisis del Documento Técnico Unificado de la propuesta del Trámite de Cambio de Uso de Suelo Forestal Modalidad A del proyecto denominado "Construcción de los Sistemas de Radio Repetidor para las Líneas de Transmisión Escárcega Potencia Xpujil y Xpujil Xul Ha", ubicado en el municipio de Calakmul.
- IX. Que mediante oficio N° SGPA/DGGFS/712/3183/16 de fecha 23 de noviembre del 2016, la Dirección General de Gestión Forestal y de Suelos, hace del conocimiento al Ing. Marco Antonio Loya Izaguirre, en su carácter de Residente Regional Peninsular de la Comisión Federal de Electricidad, las observaciones generadas por el Comité de Normatividad y Regulación Forestal del Consejo Estatal Forestal en el estado de Campeche, con el objeto de que manifestara lo que a su derecho conviniera en un plazo de 10 días conforme al artículo 59 de la Ley Federal de Procedimiento Administrativo, dichas observaciones fueron:

- Falta la memoria de cálculo de los volúmenes de las especies a remover ya que se considera que los volúmenes propuestos son muy elevados por el Cambio de Uso de Suelo.
- 2. La sumatoria total del número de individuos por hectárea para algunas especies forestales registradas en los dos tipos de vegetación (Selva mediana Subperennifolia y Selva Baja Subcaducifolia) existentes en el área donde se realizará el CUSTF son incorrectos (Ver la tabla 6.3 del capítulo 6).
- 3. El promovente deberá vincular la actividad del proyecto con los criterios establecidos en el Programa de Ordenamiento Ecológico del Territorio del Municipio de Calakmul, Campeche, decretado el 01 de diciembre de 2015, en el Periódico Oficial del Estado, ya que se realiza la vinculación con el anterior POET de Calakmul.
- 4. En relación al Capítulo XIV; Vinculación con los ordenamientos jurídicos aplicables en materia ambiental y, en su caso, con la regulación del uso del suelo, el promovente vincula con las Normas Oficiales Mexicanas en materia ambiental de manera general, por lo que deberá vincular las NOM'S aplicables desde la preparación, construcción y operación del proyecto.
- 5. Con respecto a Los Conjuntos de Datos Vectoriales con información de Uso de Suelo y Vegetación, Escala 1:250 000 del INEGI usados por la SEMARNAT se tiene lo siguiente:
 - Los polígonos del proyecto se encuentran inmersos en terreno forestal, en específico los siguientes: Selva Baja Subcaducifolia y Selva Mediana Subperennifolia.
- 6. Uno de los sitios en los que se realizará el proyecto incide dentro de la Zona Estatal Sujeta a Conservación Ecológica denominada Balam-kú, ubicado en los municipios de Calakmul y Escárcega, mismo que a la fecha ya cuenta con un Programa de Conservación y Manejo de la Zona Sujeta a Conservación Ecológica, publicado el día 4 de enero de 2011, en el Periódico Oficial del Estado de Campeche, en específico se encuentra inmerso el sitio repetidor 3, con su camino de acceso en la Zona de Amortiguamiento I (Norte).
- X. Que mediante oficio N° N22F0-0839/16 de fecha 30 de noviembre del 2016, recibido en esta Dirección General el día 5 de diciembre del 2016, el lng. Marco Antonio Loya Izaguirre, en su carácter de Residente Regional Peninsular de la Comisión Federal de Electricidad, entregó la información referente a las

Oficio N° SGPA/DGGFS/712/0789/17

observaciones hechas por el Comité de Normatividad y Regulación Forestal del Consejo Estatal Forestal del estado de Campeche, las cuales se le hicieron de su conocimiento mediante oficio N° SGPA/DGGFS/712/3183/16 de fecha 23 de noviembre del 2016, la cual dió cumplimiento con lo requerido.

- XI. Que mediante oficio N° SGPA/DGGFS/712/3384/16 de fecha 13 de diciembre del 2016, esta Dirección General de Gestión Forestal y de Suelos, notificó al Ing. Marco Antonio Loya Izaguirre, en su carácter de Residente Regional Peninsular de la Comisión Federal de Electricidad, que como parte del procedimiento para expedir la autorización de cambio de uso de suelo forestal, debería depositar ante el Fondo Forestal Mexicano, la cantidad de \$54,079.57 (Cincuenta y cuatro mil setenta y nueve pesos con 57/100 M.N.), por concepto de compensación ambiental para realizar actividades de reforestación o restauración y su mantenimiento en una superficie de 2.94 hectáreas, de los cuales \$30,406.09 pesos son para el estado de Campeche correspondiente a 1.0407 hectáreas de Selva mediana subperennifolia y 0.6150 hectáreas de Selva baja subcaducifolia y para el estado de Quintana Roo son \$23,673.48 pesos para 1.2891 hectáreas de Selva mediana subperennifolia preferentemente.
- XII. Que mediante oficio Nº N22F0-0012/17 de fecha 3 de enero del 2017, recibido en esta Dirección General de Gestión Forestal y de Suelos el día 5 de enero del 2017, el lng. Marco Antonio Loya Izaguirre, en su carácter de Residente Regional Peninsular de la Comisión Federal de Electricidad, presentó copia del comprobante del depósito realizado al Fondo Forestal Mexicano (FFM) por la cantidad de \$54,079.57 (Cincuenta y cuatro mil setenta y nueve pesos con 57/100 M.N.), por concepto de compensación ambiental para realizar actividades de reforestación o restauración y su mantenimiento en una superficie de 2.94 hectáreas, de los cuales \$30,406.09 pesos son para el estado de Campeche correspondiente a 1.0407 hectáreas de Selva mediana subperennifolia y 0.6150 hectáreas de Selva baja subcaducifolia y para el estado de Quintana Roo son \$23,673.48 pesos para 1.2891 hectáreas de Selva mediana subperennifolia preferentemente, dando cumplimiento al Resultando que antecede:

Que, con vista en las constancias y actuaciones de procedimiento arriba relacionadas, las cuales obran agregadas al expediente en que se actúa; y

CONSIDERANDO

I. Que esta Dirección General de Gestión Forestal y de Suelos de la Secretaría de Medio Ambiente y Recursos Naturales es competente para dictar la presente resolución, de conformidad con lo dispuesto en el lineamiento TERCERO del Acuerdo por el que se

Oficio N° SGPA/DGGFS/712/0789/17

expiden los lineamientos y procedimientos para solicitar en un trámite único ante la Secretaría de Medio Ambiente y Recursos Naturales, las autorizaciones en materia de impacto ambiental y en materia forestal que se indican y se asignan las atribuciones correspondientes en los servidores públicos que se señalan, publicado en el Diario Oficial de la Federación el 22 de diciembre del 2010; en los artículos 6, 12 fracción XXIX, 16 fracción XX, 58 fracción I, 117 y 118 de la Ley General de Desarrollo Forestal Sustentable (LGDFS); 120 al 127 del Reglamento de la LGDFS; 5 fracciones Il y X, 28 primer párrafo y fracción VII, 30, 34 y 35 párrafos primero, segundo y último, 35 BIS y 109 BIS 1 de la Ley General del Equilibrio Ecológico y la Protección al Ambiente (LGEPA); 2, 3 fracciones I, XII, XIII, XIV, XVI y XVII, 4 fracciones I, IV, V y VII, 5 inciso O fracción I y 47 del Reglamento de la LGEEPA en Materia de Evaluación del Impacto Ambiental (REIA) y en los artículos 19 fracción XXIII y 33 fracciones I y V del Reglamento Interior de la Secretaría de Medio Ambiente y Recursos Naturales.

II. Que el proyecto en cuestión se encuentra dentro de los supuestos previstos en el artículo 117 de la Ley General de Desarrollo Forestal Sustentable y 120 de su Reglamento, así como en el 28 primer párrafo fracción VII de la Ley General del Equilibrio Ecológico y la Protección al Ambiente, en el artículo 5 inciso O fracción I del Reglamento en Materia de Evaluación del Impacto Ambiental de la LGEEPA, por lo que se demuestra que el proyecto es de competencia federal, toda vez que se realizará la remoción de vegetación forestal en 0.6576 hectáreas de Selva mediana subperennifolia y Selva baja subcaducifolia para el desarrollo del proyecto denominado Construcción de los Sistemas de Radio Repetidor para las Líneas de Transmisión Escárcega Potencia – Xpujil y Xpujil – Xul Ha, ubicado en los municipios de Calakmul en el estado de Campeche y Othón P. Blanco en el estado de Quintana Roo.

Por lo anterior, esta Unidad Administrativa con fundamento en los lineamientos TERCERO y DÉCIMO del Acuerdo anteriormente citado y al artículo 35 de la Ley General del Equilibrio Ecológico y la Protección al Ambiente, una vez presentado el Documento Técnico Unificado modalidad A (DTU-A) inició el procedimiento de evaluación, para lo cual revisó que la solicitud se ajustara a las formalidades previstas en el Acuerdo, en la LGDFS y la LGEEPA, así como en sus Reglamentos y las Normas Oficiales Mexicanas aplicables; por lo que una vez integrado el expediente respectivo, esta Dirección General se sujetó a lo que establecen los ordenamientos antes invocados, así como a los Programas de Desarrollo Urbano y de Ordenamiento Ecológico del Territorio, las declaratorias de Áreas Naturales Protegidas y las demás disposiciones jurídicas que resulten aplicables; asimismo, se evaluaron los posibles efectos de las actividades en el ecosistema, considerando el conjunto de elementos

Oficio N° SGPA/DGGFS/712/0789/17

que los conforman y no únicamente los recursos que, en su caso, serían sujetos de aprovechamiento o afectación. En cumplimiento de lo anterior, esta Unidad Administrativa analizó lo referido en el artículo 117 de la LGDFS y 35 de la LGEEPA, a efecto de demostrar su cumplimiento.

- III. Que con el objeto de analizar que el DTU-A para el proyecto de referencia, se ajustara a las formalidades previstas en los artículos 117 de la LGDFS y 121 de su Reglamento; 30 primer párrafo de la LGEEPA; 9, 12 fracciones I, III, V y VIII, 14, 17 y 36 del REIA, así como a los lineamientos SEGUNDO fracción II, SEXTO, NOVENO y DÉCIMO del Acuerdo, esta Dirección General procedió tal y como lo disponen los artículos 117 de la LGDFS y 35 primer párrafo de la LGEEPA.
- IV. Que con el objeto de verificar el cumplimiento de los requisitos de solicitud establecidos por los artículos 15 de la Ley Federal de Procedimiento Administrativo, así como en el lineamiento NOVENO del Acuerdo, esta autoridad administrativa se abocó a la revisión de la información y documentación que fue proporcionada por el promovente, mediante sus escritos de solicitud y subsecuentes, considerando lo siguiente:
 - Por lo que corresponde al cumplimiento de los requisitos de solicitud establecidos en el artículo 15 de la Ley Federal de Procedimiento Administrativo, párrafos segundo y tercero, esta disposición establece:

Artículo 15....

Las promociones deberán hacerse por escrito en el que se precisará el nombre, denominación o razón social de quién o quiénes promuevan, en su caso de su representante legal, domicilio para recibir notificaciones, así como nombre de la persona o personas autorizadas para recibirlas, la petición que se formula, los hechos o razones que dan motivo a la petición, el órgano administrativo a que se dirigen y lugar y fecha de su emisión. El escrito deberá estar firmado por el interesado o su representante legal, a menos que no sepa o no pueda firmar, caso en el cual, se imprimirá su huella digital.

El promovente deberá adjuntar a su escrito los documentos que acrediten su personalidad, así como los que en cada caso sean requeridos en los ordenamientos respectivos.

Con vista en las constancias que obran en el expediente, se advierte que los requisitos previstos por el artículo 15 de la Ley Federal de Procedimiento Administrativo, párrafos segundo y tercero, fueron satisfechos mediante la solicitud FF-SEMARNAT-031 y el oficio N° N22F0-0479/16, ambos de fecha 16 de julio del 2016, los que se hace

Oficio N° SGPA/DGGFS/712/0789/17

referencia en el Resultando II de esta resolución, de cuyo contenido se desprende que fueron suscritos en la ciudad de Mérida, Yucatán, por el Ing. Marco Antonio Loya Izaguirre, en su carácter de Residente Regional Peninsular de la Comisión Federal de Electricidad, dirigidos a la Dirección General de Gestión Forestal y de Suelos de la SEMARNAT, solicitando la autorización de cambio de uso de suelo forestal y de impacto ambiental mediante el trámite unificado en su modalidad A, para el desarrollo del proyecto denominado **Construcción de los Sistemas de Radio Repetidor para las Líneas de Transmisión Escárcega Potencia – Xpujil y Xpujil – Xul Ha,** ubicado en los municipios de Calakmul en el estado de Campeche y Othón P. Blanco en el estado de Quintana Roo, adjuntando para tal efecto una copia certificada de la Escritura que contiene el Poder General para Actos de Administración y Especial para Actos de Administración que otorga la Comisión Federal de Electricidad, representada por el Ingeniero Benjamín Granados Domínguez, en su carácter de Director de Proyectos de Inversión Financiada a su favor y copia de su identificación oficial.

2. Por lo que corresponde al cumplimiento de los requisitos de la solicitud establecidos en el lineamiento NOVENO del Acuerdo, que dispone:

NOVENO. A la solicitud de trámite unificado de cambio de uso de suelo forestal, en sus modalidades A y B, se anexará:

- I. Documento técnico unificado, en original impreso y en formato electrónico;
- II. Copia simple de la identificación oficial del solicitante;
- III. Resumen del contenido del documento técnico unificado, en formato electrónico;
- IV. Copia de la constancia del pago de derechos correspondientes.
- V. Cuando se trate de actividades altamente riesgosas, el estudio de riesgo correspondiente;
- VI. Original o copia certificada del título de propiedad inscrito en el Registro Público que corresponda o del documento que acredite la posesión o el derecho para realizar las actividades que impliquen el cambio de uso de suelo en terrenos forestales. En ambos casos se anexará copia simple para su cotejo;
- VII. Tratándose de ejidos o comunidades agrarias, deberá presentarse original o copia certificada del acta de asamblea en la que conste el acuerdo de cambio de uso de suelo en el terreno respectivo, así como copia simple para su cotejo, y

omor N

SUBSECRETARÍA DE GESTIÓN PARA LA PROTECCIÓN AMBIENTAL DIRECCIÓN GENERAL DE GESTIÓN FORESTAL Y DE SUELOS

Oficio N° SGPA/DGGFS/712/0789/17

VIII. Cuando se trate del reconocimiento, exploración superficial y explotación petrolera en terrenos forestales, la documentación que acredite el derecho a realizar las actividades propuestas.

Con vista en las constancias que obran en el expediente, se advierte que los requisitos previstos por el lineamiento NOVENO del Acuerdo, fueron satisfechos conforme a lo siguiente:

Por lo que corresponde al requisito establecido en el citado lineamiento NOVENO fracción I, consistente en presentar el Documento Técnico Unificado del proyecto en cuestión, éste fue satisfecho mediante el documento denominado Documento Técnico Unificado Modalidad A que fue exhibido por el interesado adjunto a su solicitud de mérito, el cual fue elaborado por el quien se encuentra inscrito en el Registro Forestal Nacional como Prestador de Servicios Técnicos Forestales en el Libro

Con relación a las fracciones II, III y IV del lineamiento en cuestión, el promovente adjuntó a su solicitud copia de su credencial para votar expedida por el Instituto Nacional Electoral; Resumen del contenido del DTU-A, impreso y en formato digital; asimismo, adjuntó copia del pago de derechos por la cantidad de \$60,140.00 (Sesenta mil ciento cuarenta pesos 00/100 M.N.), por concepto de recepción, evaluación y dictamen del Documento Técnico Unificado modalidad A (DTU-A) y, en su caso, la autorización de cambio de uso de suelo forestal y de impacto ambiental, de fecha 11 de julio de 2016, conforme a lo establecido en el artículo 194-H de la Ley Federal de Derechos y al Acuerdo por el que se expiden los lineamientos y procedimientos para solicitar en un trámite único ante la Secretaría de Medio Ambiente y Recursos Naturales, las autorizaciones en materia de impacto ambiental y en materia forestal que se indican y se asignan las atribuciones correspondientes en los servidores públicos que se señalan, publicado en el Diario Oficial de la Federación el 22 de diciembre del 2010.

Por lo que corresponde al requisito previsto en la fracción VI del lineamiento NOVENO del Acuerdo, consistente en presentar original o copia certificada del título de propiedad inscrito en el Registro Público que corresponda o del documento que acredite la posesión o el derecho para realizar las actividades que impliquen el cambio de uso de suelo forestal, éste quedó satisfecho en el presente procedimiento con los documentos recibidos en esta Dirección General de Gestión Forestal y de Suelos el día 13 de septiembre de 2013 mediante oficio N° N22F0-0479/16 de fecha 12 de julio del 2016, al cual se hace referencia en el Resultando II de este resolutivo.

Oficio N° SGPA/DGGFS/712/0789/17

Asimismo, considerando la naturaleza y características del proyecto en cuestión, se exime al promovente de dar cumplimiento a las fracciones V y VIII del citado lineamiento, toda vez que el proyecto no está considerado como una actividad altamente riesgosa que amerite presentar un estudio de riesgo y tampoco se trata de reconocimiento, exploración superficial y explotación petrolera que acredite el derecho para realizar las actividades propuestas.

Por lo anterior, con base en la información y documentación que fue proporcionada por el promovente, esta autoridad administrativa tuvo por satisfechos los requisitos de solicitud previstos por el lineamiento NOVENO del Acuerdo por el que se expiden los lineamientos y procedimientos para solicitar en un trámite único ante la Secretaría de Medio Ambiente y Recursos Naturales las autorizaciones en materia de impacto ambiental y en materia forestal que se indican y se asignan las atribuciones correspondientes en los servidores públicos que se señalan, así como del artículo 15 párrafos segundo y tercero de la Ley Federal de Procedimiento Administrativo.

V. Que el Trámite Unificado de Cambio de Uso de Suelo Forestal Modalidad A, es el que integra en un sólo procedimiento administrativo el trámite relativo a la autorización de cambio de uso de suelo forestal previsto en el artículo 117 de la LGDFS y el correspondiente a la autorización en materia de impacto ambiental para las obras y actividades señaladas en la fracción VII del artículo 28 de la LGEEPA, mediante el cual la autoridad establece las condiciones a que se sujetará la realización de obras y actividades que puedan causar desequilibrio ecológico o que puedan rebasar los límites y condiciones establecidas en las disposiciones aplicables para proteger el ambiente, con el objeto de evitar o reducir al mínimo sus efectos negativos sobre los ecosistemas, así como otorgar el cambio de uso de suelo en terrenos forestales por excepción cuando no se comprometa la biodiversidad, no se provoque la erosión de los suelos, el deterioro de la calidad del agua o la disminución en su captación y que los usos alternativos del suelo que se propongan sean más productivos a largo plazo.

Para cumplir con este fin, el promovente presentó un Documento Técnico Unificado en su modalidad A para solicitar la autorización del proyecto, modalidad que se considera procedente por ubicarse en la hipótesis del artículo 11 último párrafo del REIA; asimismo, el contenido del Documento Técnico Unificado Modalidad A presentado por el promovente, se ajusta a lo establecido en el lineamiento SEXTO del Acuerdo a que se sujeta el trámite unificado de cambio de uso de suelo forestal modalidad A.

VI. Que conforme a los artículos 40 y 41 del Reglamento de la LGEEPA, los cuales disponen que a solicitud de cualquier persona de la comunidad de que se trate, se podrá llevar a cabo una consulta pública, siempre y cuando se presente dentro del plazo de diez días contados a partir de la publicación de los listados de las manifestaciones de impacto

Oficio N° SGPA/DGGFS/712/0789/17

ambiental y la secretaría notificará al interesado la determinación de dar o no inicio a la consulta pública; en este sentido, no se recibió escrito alguno para solicitar la consulta pública del proyecto que nos ocupa, por lo que no fue aplicable este precepto legal.

VII. Que con el objeto de resolver lo relativo a la demostración de los supuestos normativos de excepción que establece el artículo 117, párrafo primero, de la Ley General de Desarrollo Forestal Sustentable, de cuyo cumplimiento depende la autorización de cambio de uso de suelo en terrenos forestales solicitada, esta autoridad administrativa se abocó al análisis de la información y documentación que obra en el expediente, considerando lo siguiente:

El artículo 117, párrafo primero de la LGDFS establece:

ARTÍCULO 117. La Secretaría sólo podrá autorizar el cambio de uso del suelo en terrenos forestales, por excepción, previa opinión técnica de los miembros del Consejo Estatal Forestal de que se trate y con base en los estudios técnicos justificativos que demuestren que no se compromete la biodiversidad, ni se provocará la erosión de los suelos, el deterioro de la calidad del agua o la disminución en su captación; y que los usos alternativos del suelo que se propongan sean más productivos a largo plazo. Estos estudios se deberán considerar en conjunto y no de manera aislada.

De la lectura de la disposición arriba citada, se desprende que a esta autoridad administrativa sólo le está permitido autorizar el cambio de uso de suelo en terrenos forestales, por excepción, cuando el interesado demuestre a través de su estudio técnico justificativo y, en este caso Documento Técnico Unificado, que se actualizan los supuestos siguientes:

- 1. Que no se comprometerá la biodiversidad,
- 2. Que no se provocará la erosión de los suelos,
- 3. Que no se provocará el deterioro de la calidad del agua o la disminución en su captación, y
- 4. Que los usos alternativos del suelo que se propongan sean más productivos a largo plazo.

En tal virtud, con base en el análisis de la información técnica proporcionada por el promovente, se entra en el examen de las cuatro hipótesis arriba referidas, en los términos que a continuación se indican:

Por lo que corresponde a la primera de las hipótesis arriba referidas, consistente en demostrar que no se comprometerá la biodiversidad.

Oficio N° SGPA/DGGFS/712/0789/17

En el Documento Técnico Unificado modalidad A (DTU-A) de cambio de uso de suelo en terrenos forestales, se desprende información contenida en diversos apartados del mismo, consistente en que:

Desde el punto de vista ambiental, se prevé que el proyecto no pondrá en riesgo los servicios ambientales que proporciona el ecosistema identificado, lo anterior en virtud de que se consideraron los siguientes criterios:

- Cercanía del sitio a infraestructura existente. Existen suficientes vías de acceso principal, no sólo la carretera federal 186 en su tramo Escárcega Potencia-Xpujil y Xpujil – Xul Ha, sino también las brechas y caminos perpendiculares a la misma, que se utilizan para el acceso a parcelas y zonas de cultivo por parte de los pobladores.
- No se afectarán ecosistemas prístinos, toda vez que se observa el impacto ocasionado por las actividades agropecuarias en la zona. Como evidencia de lo anterior, se observó que en la mayoría de la superficie aledaña a donde se ubicará el proyecto se encuentran afectaciones por actividades agropecuarias y sólo una parte menor alberga vegetación forestal en diferentes estados de conservación.
- Desde el punto de vista de la vegetación, ésta es característica de toda la región y en los sitios propuestos se encontraron especies en alguna categoría de riesgo, de acuerdo con la Norma Oficial Mexicana NOM-059-SEMARNAT-2010, las cuales por su ubicación, tallas y abundancia son factibles de ser sujetas a acciones de rescate y reubicación.
- No obstante el alto grado de impacto y la proximidad de zonas urbanas e infraestructura diversa, en los sitios cercanos a las áreas propuestas para el cambio de uso de suelo, se observa un componente faunístico bien representado y distribuido en toda la zona, por lo que considerando las dimensiones requeridas y que el proyecto no confinará el área, no se ocasionará un impacto significativo sobre el componente faunístico y se espera continúe la utilización de los mismos espacios con el proyecto en operación.
- Con respecto al paisaje, el sitio presenta una baja a media calidad paisajística debido a la infraestructura eléctrica ya existente y a las zonas de cultivo que ocupan amplias extensiones.

Justificación técnica.

La importancia técnica de este proyecto, corresponde esencialmente a contar con áreas para la instalación de infraestructura de comunicación radial, que contribuya al correcto monitoreo y vigilancia de obras como la línea de transmisión que se encuentra cercana, además de ser un elemento importante para las actividades de mantenimiento de esta obra tan relevante, toda vez que un mal funcionamiento de ésta, podría ocasionar pérdidas a los diferentes sectores de la región que se ven beneficiados por esta importante obra; es así que el proyecto propuesto tiene como objetivos:

Oficio N° SGPA/DGGFS/712/0789/17

- Contribuir al correcto funcionamiento, vigilancia y control de las obras L.T. Escárcega Potencia – Xpujil y L.T. Xpujil – Xul Ha, las cuales reforzarán el enlace del sistema eléctrico peninsular con el sistema eléctrico nacional, incrementando la capacidad de transmisión para satisfacer la demanda de los estados de Campeche y Quintana Roo en apoyo del desarrollo de los municipios que la integran.
- Contar con infraestructura de radio comunicación para una correcta operación de una obra como la línea de transmisión, de tal manera que permita atender a mediano y largo plazo la demanda del servicio de suministro de energía eléctrica a nivel regional contando con infraestructura en buen estado y con un largo período de vida útil.

Para demostrar que no se comprometerá la biodiversidad.

Para poder determinar que el proyecto propuesto no compromete la biodiversidad, se procedió a realizar un análisis de la diversidad de flora y fauna que existe en el sistema ambiental, en comparación con aquella diversidad que subsiste en la superficie de cambio de uso de suelo en terrenos forestales; además de considerar los Índices de Valor de Importancia de las especies presentes en el sistema, de acuerdo a lo descrito en el DTU-A.

Con objeto de determinar si el cambio de uso del suelo que se propone no compromete la biodiversidad en el sistema ambiental definido, se utilizó el análisis de similitud de Sorensen para comparar la diversidad entre el predio de interés y otro sitio (sitio de referencia) ubicado dentro del sistema ambiental definido para el proyecto. La hipótesis es que, si ambos sitios presentan una similitud elevada entre sí, la pérdida de la vegetación en uno de ellos está respaldada por la conservación de la cobertura en el otro y por ende la biodiversidad no sería comprometida.

El Índice de Sorensen se habrá de calcular a partir de los siguientes datos: Formula del Índice de Sorensen.

$$QS = \frac{2C}{A+B} = \frac{2|A\cap B|}{|A|+|B|}$$

Donde:

A: Número de especies en el sitio A: 106

B: Número de especies en el sitio B: 81

C: Número de especies presentes en ambos sitios, A y B

Oficio N° SGPA/DGGFS/712/0789/17

De acuerdo con el listado florístico presentado en el capítulo V del D, la vegetación de Selva mediana subperennifolia y selva baja subcaducifolia al interior del predio alcanza una riqueza de 116 especies. Se encuentran agrupadas en 56 familias, de las cuales las Fabaceae y Rubiaceae son las más abundantes. La mayoría de las especies identificadas presentan una forma de vida arbórea, algunas especies son arbustivas, herbáceas y palmas.

Por otra parte, de acuerdo con el inventario forestal para el sistema ambiental de referencia presentado en el capítulo IV del DTU-A, se identificaron 226 especies de vegetación de Selva mediana subperennifolia. Estas especies se encuentran agrupadas en 59 familias, de la cual la Fabaceae es la más abundante.

Por tanto, sustituyendo en la fórmula se tiene que el índice de similitud es:

$$QS = \frac{2 (81)}{(106 + 81)} \times 100 = 0.86 \times 100 = 86 \%$$

El análisis indica que la similitud de la composición florística en ambos sitios es de 0.86 (86% de similitud), o sea, más cercana a uno que a cero, por lo que no se compromete la riqueza de las especies, ya que en caso que tenga lugar el desmonte en el sitio del proyecto, la representatividad específica está garantizada en el sistema ambiental, al conservarse en el sitio de referencia, considerando que las especies se distribuyen ampliamente dentro y fuera del sistema ambiental.

Otra manera de aproximarse a la valoración de la conservación de la biodiversidad, es mediante la estimación de la diversidad real (H) y la máxima posible (H_{max}) de una comunidad hipotética con el mismo número de especies mediante el índice de Shannon-Wiener, del cual también se deduce la equitatividad en el ecosistema. Respecto a este último parámetro, la flora del sistema ambiental presente en los tres estratos –herbáceo, arbustivo y arbóreo- se estimó muy cercana a 1; 0.9, 0.9 y 0.7 respectivamente, lo cual significa que la distribución de las especies es homogénea. Esto mismo se encontró en los predios de referencia con ligeras diferencias, donde la equitatividad fue de 0.7, 0.8 y 0.9 para los estratos herbáceo, arbustivo y arbóreo respectivamente. Lo anterior indica una alta homogeneidad entre estratos y la representatividad en el estrato herbáceo de las especies presentes en los estratos arbustivo y arbóreo, indicador del proceso de regeneración y semejanza de los sitios analizados.

En cuanto a índice de diversidad (H) los valores obtenidos en el predio y en el sistema ambiental son muy similares debido a la semejanza de los sitios analizados.

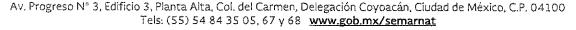
Oficio N° SGPA/DGGFS/712/0789/17

SITIO	Vegetación	RIQUEZA	Н	Hmax	EQUITABILIDAD
Área sujeta a	SMSP	62	2.1	2.5	0.7
CUSTF	SBSC	54	1.7	3.5	0.8
Sistema ambiental	SMSP	221	3.4	2.3	0.9

Índice de Valor de Importancia (IVI) de las especies de flora.

El Índice de Valor de Importancia representa el valor ecológico de una especie en una comunidad vegetal. Se representa por tres componentes: frecuencia relativa, densidad relativa y dominancia relativa.

Selva mediana subperennifolia en la cuenca hidrológico forestal.


En el presente apartado, se presentan el Índice de Valor de Importancia (IVI) obtenidos para las especies leñosas con alturas mayores a 1.5 m registradas en la selva mediana subperennifolia. En el siguiente cuadro podemos observar que Croton arboreus representa el 32.05 del IVI en este tipo de vegetación, debido a su elevado valor de densidad relativa y dominancia relativa. Otras dos especies con elevado IVI son Bursera simaruba y Metopium brownei, la primera con alto valor de dominancia relativa y frecuencia relativa, principalmente en el sitio muestreado.

Encontramos como en cualquier comunidad vegetal, que existen pocas especies abundantes y muchas especies escasas, siendo la especie con mayor IVI (Croton arboreus) una especie ampliamente distribuida en selvas medianas de la península de Yucatán, en especial en áreas perturbadas, por lo que interpretamos que los parches de vegetación muestreados para este tipo de vegetación se encuentran en diferentes etapas de regeneración.

Índice de Valor de Importancia (IVI) de las especies de Selva mediana subperennifolia.

Especie	Dom	Frec	DR.	FR	DR	īVI.
Croton arboreus	92	8	14.11	3.98	13.96	32.05
Bursera simaruba	22	8	3.37	3.98	12.12	19.48
Metopium brownei	52	6 ×	7.98	2.99	6.95	17.91
Coccoloba cozumelensis	34	8	5.21	3.98	3.61	12.81
Lysiloma latisiliquum	4	4	0.61	1.99	8.01	10.61

SEMARNAT SECRETARÍA DE MEDIO AMBIENTE Y RECURSOS NATURALES

SUBS

SUBSECRETARÍA DE GESTIÓN PARA LA PROTECCIÓN AMBIENTAL DIRECCIÓN GENERAL DE GESTIÓN FORESTAL Y DE SUELOS

Especie	Dom	Frec	DR	FR	DR	IVI
Neomillspaughia emarginat	38	4	5.83	1.99	2.33	10.15
Thouinia paucidentata	10	5	1.53	2.49	6.03	10.05
Mosannona depressa	35	8	5.37	3.98	0.48	9.83
Simarouba amara	1	1	0.15	0.50	8.83	9.48
Cascabela gaumeri	17	4	2.61	1.99	4.75	9.35
Swartzia cubensis var. cubensis	5	4	0.77	1.99	5.07	7.82
Psidium sartorianum	27	7	4.14	3.48	0.15	7.78
Semialarium mexicanum	22	6	3.37	2.99	1.04	7.40
Eugenia axillaris	24	4	3.68	1.99	1.70	7.37
Nectandra salicifolia	13	6	1.99	2.99	1.68	6.66
Eugenia acapulcensis	19	4	2.91	1.99	1.03	5.93
Guarea petenensis	*11	4	1.69	1.99	1.66	5.34
Randia longiloba	19	4	2.91	1.99	0.27	5.17
Lonchocarpus rugosus	ં 6	3,	. 0.92	1.49	2.70	5.11
Eugenia sp.	16	4	2.45	1.99	0.45	4.90
Lonchocarpus xuul	9	5	1.38	2.49	0.98	4.85
Sideroxylon salicifolium	4	2	0.61	1.00	2.89	4.50
Moraceae	6	3.	0.92	1.49	2.02	4.44
Diospyros tetrasperma	14	ે 3∖	2.15	1.49	0.51	4.15
Protium copal	. 8	4	1.23	1.99	0.58	3.80
Croton reflexifolius	10	3	1.53.	1.49	0.65	3.68
Coccoloba spicata	9	4	1.38	1.99	0.20	3.57
Ardisia escallonioides	8	4	1.23	1.99	0.21	3.42
Grossopetalum gaumeri	12	3	1.84	1.49	0.09	3.42
Piper amalago	11	3	1.69	1.49	0.09	3.27
Gymnopodium floribundum	7	2	1.07	1.00	1.07	3,14
Cedrela odorata	1	, <u>1</u>	0.15	0.50	2.3 <i>7</i>	3.02
Dendropanax arboreus	6	. 4	0.92	1.99	0.05	2.96
Diospyros yucatanensis	100 7 255	3	1.07	1.49	0.29	2.85
Guarea sp	4	.3	0.61	1.49	0.23	2.33
Guettarda gaumeri	4	· 3	0.61	1.49	0.03	2.14
Gymnanthes lucida	5	2	0.77	1.00	0.28	2.04

SECRETARÍA DE MEDIO AMBIENTE Y RECURSOS NATURALES

SUBSECRETARÍA DE GESTIÓN PARA LA PROTECCIÓN AMBIENTAL DIRECCIÓN GENERAL DE GESTIÓN FORESTAL Y DE SUELOS

Especie	Dom	Frec	DR	FR	DR	IVI
Bunchosia swartziana	3	3	0.46	1.49	0.05	2.00
Pimenta dioica	3	3	0.46	1.49	0.02	1.97
Cupania dentata	5	2	0.77	1.00	0.08	1.84
Sabal sp.	1	1	0.15	0.50	1.06	1.72
Randia obcordata	4	2	0.61	1.00	0.02	1.63
Zuelania guidonia	2	1	0.31	0.50	0.78	1.59
Piscidia piscipula	3	2	0.46	1.00	0.04	1.50
Vachellia cornigera	3 .	1	0.46	0.50	0.50	1.46
Heliocarpus mexicanus	2	2	0.31	1.00	0.13	1.44
Guettarda elliptica	2	2	0.31	1.00	0.03	1.34
Mariosousa dolichostachya	2	2	0.31	1.00	0.02	1.32
Malpighia glabra	2 .	. Ž	.0.31	1.00	0.02	1.32
Guettarda combsii	2	2	0.31	1.00	0.01	1.31
Ouratea nitida	2	2	0.31	1.00	0.01	1.31
Manilkara zapota	2	1	0.31	0.50	0.44	1,24
Gecropia peltata	1	1	0.15	0.50	0.46	1.11
Platymiscium yucatanum	2	- 1	0.31	0.50	0.17	0.98
Sideroxylon foetidissimum	1	1	0.15	0.50	0.29	0.94
Erythroxylum confusum	2	1	0.31	0.50	0.02	0.83
Randia armata	2	2 1	0.31	0.50	0.02	0.82
Hampea trilobata	. 1	ı.	0.15	0.50	0.15	0.80
Allophylus cominia	. 1 🐇	1	0.15	0.50	0.11	0.77
Sapranthus campechianus	1	I	0.15	0.50	0.08	0.73
Psychotria nervosa	1	1	0.15	0.50	0.02	0.67
Senegalia gaumeri	1 i	1	0.15	0.50	0.02	0.67
Bauhinia sp.	110	11 T	0.15	0.50	0.02	0.67
Rubiaceae	1	43 1 (805)	0.15	0.50	0.02	0.67
Bauhinia divaricata	1	. 1	0.15	0.50	0.01	0.66
Matayba oppositifolia	I	1	0.15	0.50	0.01	0.66
Annona primigenia	i 1 cos	1	0.15	0.50	0.00	0.65
Myrtaceae	1	J 1	0.15	0.50	0.00	0.65
Trichillia sp.	1	1	0.15	0.50	0.00	0.65

Oficio N° SGPA/DGGFS/712/0789/17

Especie	Dom	Frec	DR	FR	DR	IVI
Bauhinia jenningsii	1	1	0.15	0.50	0.00	0.65
Casimiroa tetrameria	1	1	0.15	0.50	0.00	0.65

Selva baja subcaducifolia en la cuenca hidrológico forestal.

En la siguiente tabla, se presentan los índices de Valor de Importancia (IVI) obtenidos para todas las especies leñosas con alturas mayores a 1.5 m registradas en la Selva baja subcaducifolia. En este cuadro observamos que Terminalia buceras y Guettarda elliptica son las especies con mayor IVI, representando el 62.59 del IVI en este tipo de vegetación. La primera especie posee elevado valor de dominancia en este tipo de selva, lo que nos indica que son árboles con diámetros grandes, en tanto que la segunda especie tiene densidad elevada, principalmente en el sitio de lomeríos. Ambas especies son características de este tipo de vegetación y son susceptibles a cambios en los regímenes de precipitación pluvial e inundación local, por lo que deben mantenerse las condiciones edáficas en sus sitios de distribución.

El hecho de encontrar otras especies características de este tipo de vegetación (Coccoloba cozumelensis, Haematoxylum campechianum y Psidium sartorianum), con los valores de IVI más altos, nos indican que el sitio estudiado representa parches con vegetación en buen estado de conservación.

Índice de Valor de Importancia (IVI) de las especies de Selva baja subcaducifolia.

Especie	DOM	FREC	DR	FR	DR	VIR
Terminalia buceras	20	7	3.73	3.61	27.11	34.45
Guettarda elliptica	64	12	11.94	6.19	10.01	28.14
Psidium sartorianum	54	6	10.07	3.09	3.05	16.22
Coccoloba cozumelensis	24	્ર 6⊱્	4.48	3.09	6.31	13.88
Metopium brownei	18	.6	3.36	3.09	6.71	13.16
Haematoxylum campechianum	17	5	3.17	2.58	6.91	12.66
Sebastiania adenophora	3,1	.8	5.78	4.12	1.13	11.04
Gymnopodium floribundum	12	7	2.24	3.61	4.69	10.54
Croton reflexifolius	31	7.5°	5.78	3.61	1.12	10.51
Manilkara zapota	20	- 8	3.73	4.12	1.22	9.08
Cameraria latifolia	17	5	3.17	2.58	2.54	8.29

Especie	DOM	FREC	DR	FR	ÐR	VIR
Randia aculeata	14	8	2.61	4.12	1.07	7.80
Semialarium mexicanum	15	5	2.80	2.58	2.06	7.44
Erytrhoxylum rotundifolium	18	6	3.36	3.09	0.51	6.97
Eugenia axillaris	16	6	2.99	3.09	0.54	6.62
Byrsonima bucidaefolia	11	5	2.05	2.58	1.57	6.20
Zygia stevensonii	18	3	3.36	1.55	1.20	6.11
Pithecellobium lanceolatum	9	7	1.68	3.61	0.50	5.78
Chrysophyllum mexicanum	8	5	1.49	2.58	1.22	5.29
Lonchocarpus xuul	5	3	0.93	1.55	2.78	5.26
Casearia subsessiliflora	9	2	1.68	1.03	2.16	4.87
Diospyros anisandra	12	2	2.24	1.03	1.42	4.69
Crossopetalum gaumeri	9	<u>.</u>	1.68	2.58	0.02	4.28
Mimosa bahamensis	6	4	1.12	2.06	1.05	4.23
Amyris elemifera	7	5	1.31	2.58	0.34	4.22
Gymnanthes lucida	7 "	5	1.31	2.58	0.15	4.04
Eugenia laevis	7		1.31	1.55	1.14	3.99
Hampea trilobata	6	4	1.12	2.06	0.56	3.75
Ouratea lucens	8	4	1.49	2.06	0.05	3.60
Randia longiloba	4	. 4	0.75	2.06	0.56	3.37
Coccoloba barbadensis	- 5	2	0.93	1.03	1.12	3.08
Agonandra macrocarpa	1	1,	0.19	0.52	2.34	3.04
Malpighia lundellii	1	1	0.19	0.52	1.93	2.63
Dalbergia glabra	3	3	0.56	1.55	0.24	2.34
Gliricidia sepium	. 2	2	0.37	1.03	0.60	2.00
Coccoloba reflexiflora	1	gion 1 000gi	0.19	0.52	1.15	1.85
Bravaisia berlandieriana	3	2	0.56	1.03	0.09	1.69
Psychotria nervosa Sw.	3	2	0.56	1.03	0.07	1.66
Lonchocarpus rugosus	2	1	0.37	0.52	0.66	1.55
Sapranthus campechianus	2	- 2	0.37	1.03	0.11	1.52
Randia obcordata	2	2	0.37	1.03	0.03	1.44
Zuelania guidonia	i	1	0.19	0.52	0.68	1.38

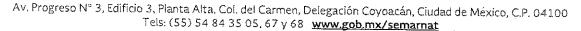
Oficio N° SGPA/DGGFS/712/0789/17

Especie	ром	FREC	DR	FR	DR	VIR
Eugenia sp.	2	1	0.37	0.52	0.32	1.21
Sideroxylon salicifolium	1	1	0.19	0.52	0.42	1.13
Mosannona depressa	1	1	0.19	0.52	0.24	0.94
Xylosma flexuosa	2	1	0.37	0.52	0.00	0.89
Vachellia cornígera	1	1	0.19	0.52	0.11	0.81
Croton arboreus	1	1	0.19	0.52	0.08	0.78
Bonellia macrocarpa	1	1	0.19	0.52	0.03	0.73
Eugenia acapulcensis	1	1	0.19	0.52	0.03	0.73
Cascabela gaumeri	1	1	0.19	0.52	0.02	0.72
Randia armata	1	1	0.19	0.52	0.01	0.71
Byttneria aculeata	I	<u>1</u>	- 0.19	0.52	0.00	≥0.70

Índice de Valor de Importancia (IVI) de Selva mediana subperennifolia en el área de cambio de uso de suelo.

Se observó que en general las especies con mayor IVI son Lonchocarpus xuul y Croton arboreus debido a su elevado valor de densidad relativa y dominancia relativa, considerando también que se trata de especies con presencia en la mayor parte de los sitios. Destaca también el caso de Bursera simaruba, la cual presentó la mayor frecuencia, observándose en el 78% del total de sitios muestreados y que presentó dominancia relativa significativa, ya que algunos de los árboles mejor desarrollados corresponden a esta especie. Lo mismo ocurre con Lysiloma latisiliquum y Metopium brownei que también presentaron una destacable dominancia con respecto a otros registros y se encuentra bien distribuida a lo largo de la región donde se encuentran inmersos los sitios a ocupar.

Es importante mencionar que las especies con mayor IVI son especies que presentan una amplia distribución en la Península de Yucatán y son muy comunes en las selvas medianas secundarias. De hecho, para Lonchocarpus xuul se presenta un diámetro promedio de 7.19 cm y una altura media de 9.27 m, lo que indica que se trata de ejemplares en desarrollo. De esta manera, se concluye que las especies representativas de este tipo de ecosistema en el área donde tendrá lugar el proyecto presentan una distribución homogénea y no conforman poblaciones vulnerables.


Oficio N° SGPA/DGGFS/712/0789/17

Índice de Valor de Importancia (IVI) del arbolado adulto de Selva mediana subperennifolia en el área de cambio de uso de suelo.

Se registraron 1,638 individuos en esta categoría, donde Bursera simaruba destaca como la especie con mayor IVI ligeramente por encima de Lysiloma latisiliquum. De igual manera, se observa a Metopium brownei y Vitex gaumeri como las especies arbóreas mejor representadas. La abundancia y frecuencia de estas especies parece ser un denominador común en los sitios muestreados. Así mismo, es posible notar que, de las 101 especies registradas en este tipo de vegetación, la mayor parte presenta valores de importancia más altos, destacando especies comunes en selvas medianas en recuperación, como son: Bursera simaruba, Lysiloma latisiliquum y Metopium brownei.

Índice de Valor de Importancia (IVI) para el arbolado adulto de la Selva mediana subperennifolia

Especie	Abundancia	Frecuencia	Densidad Rel	Frecuencia Rel.	Dominancia Rel	ıvı	
Bursera simaruba	184	32	11.233	5.808	11.692	28.732	
Lysiloma latisiliquum	84	26	5.128	4.719	14.920	24.767	
Metopium brownei	119	26	7.265	4.719	8.159	20.143	
Vitex gaumeri	67	15	4.090	2.722	5.807	12.620	
Croton arboreus	87	21	5.311	3.811	2.771	11.893	
Lonchocarpus xuul	97	15	5.922	2.722	3.210	11.854	
Coccoloba spicata	61	17	3.724	3.085	3.664	10.473	
Dendropanax arboreus	50	15	3.053	2.722	2.752	8.527	
Coccoloba cozumelensis	61	16	3.724	2.904	1.706	8.334	
Pouteria campechiana	38	14	2.320	2.541	3.189	8.050	
Piscidia piscipula	57	7	3.480	1.270	2.458	7.208	
Lonchocarpus castilloi	34	11	2.076	1.996	2.599		
Simarouba amara	40	12	2.442	2.178	1.821	6.671	
Guettarda combsii	26	16	1.587	2.904	0.777	6.440	
Caesalpinia gaumeri	*** 27	3 5 5 6	1.648	0.544	2.746	5.268	
Diospyros yucatanensis	21	14	1.282	2.541	0.748	4.939	
Sabal mexicana	15:	10	0.916	1.815	1.535	4.571	
Zuelania guidonia	19	11	1.160	1.996	1.036	4.265	
Nectandra salicifolia	20	12	1.221	2.178	0.728	4.193	
Swartzia cubensis	19	9	1.160	1.633	1.255	4.127	
Thouinia paucidentata	16	10	0.977	1.815	1.191	4.048	
Sideroxylon salicifolium	- 22	. 8	1.343	1.452	1.090	3.983	
Nectandra sp	26	8	1.587	1.452	0.824	3.885	
Lonchocarpus rugosus	26	8	1.587	1.452	0.824	3.863	
Hampea trilobata	19	11	1.160	1.996	0.798	3.835 3.771	
Cascabela gaumeri	20	8	1.221	1.452	0.939	3.612	
Swietenia macrophylla	13	5	0.794	0.907	1.785		
Manilkara sapota		3	0.366	0.544	1.828	3.486	
Haematoxylum	Shirth-Sp.			20.5 44 2	1.020	2.738	
campechianum	16	4	0.977	0.726	0.888	2.591	
Matayba oppositifolia	14	4	0.855	0.726	0.988	2.569	
Pouteria reticulata	14	4	0.855	0.726	0.886	2.467	
			0.000	U.720	0.000	4.40/	

SEMARNAT SECRETARÍA DE MEDIO AMBIENTE Y RECURSOS NATURALES

SUBSECRETARÍA DE GESTIÓN PARA LA PROTECCIÓN AMBIENTAL DIRECCIÓN GENERAL DE GESTIÓN FORESTAL Y DE SUELOS

			Densidad	Frecuencia	Dominancia	
Especie	Abundancia	Frecuencia	Rel.	Rel.	Rel.	IVI
Terminalia buceras	9	4	0.549	0.726	1.180	2.455
Simira salvadorensis	9	7	0.549	1.270	0.486	2.305
Chrysophyllum mexicanum	11	6	0.672	1.089	0.482	2.243
Cupania belizensis	11	7	0.672	1.270	0.270	2.212
Eugenia bumelioides	13	5	0.794	0.907	0.345	2.046
Mosannona depressa	15	4	0.916	0.726	0.389	2.031
Annona primigenia	11	5	0.672	0.907	0.380	1.959
Protium copal	10	4	0.611	0.726	0.531	1.868
Eugenia acapulcensis	10	5	0.611	0.907	0.245	1.763
Melicoccus oliviformis ssp.						
oliviformis	6	5	0.366	0.907	0.411	1.685
Heliocarpus donell-smithii	9	4	0.549	0.726	0.406	1.681
Gymnanthes lucida	13		0.794	0.181	0.610	1.586
Tabebuia rosea	9	4	0.549	0.726	0.272	1.548
Platymiscium yucatanum	<i>- '5</i>	5	0.305	0.907	0.281	1.494
Gymnopodium floribundum	8	4	0.488	0.726	0.195	1.409
Nectandra coriacea	6	4	0.366	0.726	0.287	1.379
Cecropia peltata	7	4	0.427	0.726	0.219	1.372
Eugenia sp	8	. 3	0.488	0.544	0.205	1.238
Trophis racemosa	5	4	0.305	0.726	0.177	1.209
Jatropha gaumeri	7 7	3	0.427	0.544	0.219	1.191
Caesalpinia yucatanensis	6	2	0.366	0.363	0.454	1.183
Croton reflexifolius	5.00 b	4	0.305	0.726	0.141	1.173
Trichilia sp	6	3	0.366	0.544	0.248	1.158
Pouteria amygdalina	6	3	0.366	0.544	0.246	1.157
Ehretia tinifolia	.6	3 1	0.366	0.544	0.233	1.144
Elaeodendron xylocarpum	4	4	0.244	0.726	0.153	1.123
Semialarium mexicanum	8	2	0.488	0.363	0.248	1.100
Spondias mombin	3	3	0.183	0.544	0.322	1.050
Talisia floresii	3	2	0.183	0.363	0.401	0.947
Acacia cornigera	4	3 3	0.244	0.544	0.401	0.903
Psidium sartorianum	4	3.	0.244	0.544	0.097	∂.205 ∂0.885
Diospyros sp. Yucatanensis	6	2	0.366	0.363	0.146	0.876
Randia sp	5	3	0.305	0.544	0.018	0.868
Byrsonima bucidaefolia	3	3	0.303	0.544	0.121	0.849
Allophylus cominia	3	3 3	0.183	0.544	0.121	0.837
Eugenia winzerlingii	5	2	0.305	0.363	0.146	0.815
Randia longiloba	3	3	0.183	0.544	0.080	0.808
Ficus obtusifolia		2	0.122	0.363	0.236	0.721
Guarea petenensis	4	2	0.122	0.363	0.109	0.716
Guettarda gaumeri		Z1	0.183	0.181	0.331	0.696
Neea psychotrioides	3 22	2	0.183		0.127	0.673
Neomillspaughia emarginata	3	2	0.183	0.363		
Pseudobombax ellipticum	3 1	1	0.183	0.363 C	0.075 0.370	0.621 0.613
Hyperbaena winzerlingii		Toll Transporter			} 	
Ficus cotinifolia	2	1	0.001	0.181	0.349	0.591
Pseudolmedia glabrata	F 175-29 STATE T. P. C.	1	0.122	0.181	0.288	0.591
Sapranthus campechianus		2 2	0.122	0.363	0.090	0.575
			0.122	0.363	0.058	0.543
Drypetes laterifolia Mimosa bahamensis	·		0.244	0.181	0.115	0.541
	2		0.122	0.363	0.041	0.526
Caesalpinia mollis	2	1	0.122	0.181	0.208	0.512

Oficio N° SGPA/DGGFS/712/0789/17

Especie	Abundancia	Frecuencia	Densidad Rel	Frecuencia Rel	Dominancia Rel.	. IVI
Coccoloba diversifolia	2	1	0.122	0.181	0.206	0.510
Plumeria obtusa	1	1	0.061	0.181	0.159	0.402
Lonchocarpus sp	2	1	0.122	0.181	0.095	0.398
Erythroxylum rotundifolium	2	1	0.122	0.181	0.081	0.385
Acaciella angustissima	2 .	1	0.122	0.181	0.071	0.375
Colubrina sp	2	1	0.122	0.181	0.041	0.345
Guettarda combsii	1	1	0.061	0.181	0.077	0.319
Gliricidia maculata	1	1	0.061	0.181	0.047	0.289
Dalbergia glabra	1	1	0.061	0.181	0.046	0.289
Randia aculeata	1	1	0.061	0.181	0.041	0.283
Ardisia escallonioides	1	1	0.061	0.181	0.040	0.283
Pimienta dioica	1	1	0.061	0.181	0.039	0.281
Coccoloba acapulcensis	1	1 1.	0.061	0.181	0.035	0.278
Guazuma ulmifolia	1	1 1 1 1 1	0.061	0.181	0.035	0.278
Lonchocarpus guatemalensis	28 1 1 1	1 - 1	0.061	0.181	0.030	0.273
Senegalia gaumeri	, 1	1	0.061	0.181	0.028	0.271
Senna racemosa	-1	1	0.061	0.181	0.024	0.267
Apoplanesia paniculata	45 1	1	0.061	0.181	0.022	0.265
Stemmadenia donnell-smithii	1	1.7	0.061	0.181	<i>\$</i> ≈0.019	0.262
Total general	1638	551	100	100	100	300

Índice de Valor de Importancia (IVI) del estrato arbustivo de Selva mediana subperennifolia.

Para esta categoría, la especie con mayor IVI resultó ser Lonchocarpus xuul, seguida de Croton arboreus, Coccoloba cozumelensis todas ellas especies de rápido crecimiento. Salvo en el caso de Hampea trilobata la cual presenta hábito arbóreo o arbustivo y que suele ser común para las selvas medianas de la Península de Yucatán.

AND	ntana ny faritr'i National ao amin'ny faritr'i Amerika. No amin'ny faritr'i Amerikana ao amin'ny faritr'i Amerika.		1.3 2 A. 2 M. 14 15	8, 28, 18 ₂ 16	- 10.0 	新国
Especie	Densidad	frecvencia	Densidad Rel.	Frecuencia Rel	Dominancia Rel.	IVI
Lonchocarpus xuul	674	14	15.68	6.09	15.40	37.17
Croton arboreus	241	11	10.39	4.78	10.73	25.90
Coccoloba cozumelensis	124	9	4.68	3.91	5.77	14.37
Hampea trilobata	103	Bazros 8. mai J	4.89	3.48	4.93	13.29
Guettarda combsii	189	9	2.85	் 3.91 ∞	2.66	9.42
Eugenia sp	82	• 16 ⁴ 0 8 500 0	3.26	3.48	2.14	8.88
Croton reflexifolius	97	6	2.85 ····	2.61	2.61	8.07
Mosannona depressa	46	7	2.65	3.04	2.27	7.96
Mimosa bahamensis	136	5 5	3.05	2.17	2.66	7.89
Bursera simaruba	176		2.24	3.48	2.12	7.84
Metopium brownei	74	. 5	2.24	2.17	3.05	7.46
Eugenia acapulcensis	<i>∠</i> ∴ 83 ≪	e:#±:5° }; (2.65	2.17	2.63	7.45
Bauhinia divaricata	79	2	3.05	0.87	1.91	5.84
Allophylus cominia	34	5	1.63	2.17	1.79	5.59
Chrysophyllum mexicanum	23	5	1.22	2.17	1.51	4.90
Lonchocarpus rugosus	70	3	1.43	1.30	2.01	4.74

Av. Progreso N° 3, Edificio 3. Planta Alta, Col. del Carmen, Delegación Coyoacán, Ciudad de México, C.P. 04100 Tels: (55) 54 84 35 05, 67 y 68 <u>www.gob.mx/semarnat</u>

SEMARNAT SECRETARÍA DE MEDIO AMBIENTE Y RECURSOS NATURALES

SUBSECRETARÍA DE GESTIÓN PARA LA PROTECCIÓN AMBIENTAL DIRECCIÓN GENERAL DE GESTIÓN FORESTAL Y DE SUELOS

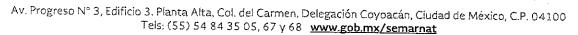
Oficio N° SGPA/DGGFS/712/0789/17

	la de la companya de		Densidad			Andreas and the late
Especie	Densidad	frecuencia	25.2566 (26.655) (26.456) (26.456)	Frecuencia	Dominancia	IVI
Coccoloba spicata	47	4	Rel.	Rel.	Rel.	
Eugenia winzerlingii	47 84	4	1.22	1.74	1.40	4.36
Simarouba amara	41	3	1.63	1.30	1.20	4.14
		2	1.02	0.87	2.10	3.99
Lysiloma latisiliquum	19	4	1.02	1.74	1.18	3.94
Diospyros yucatanensis	64	. 4	0.81	1.74	1.15	3.70
Nectandra salicifolia	42	4	1.22	1.74	0.55	3.51
Piscidia piscipula	18	3	1.02	1.30	1.14	3.46
Annona primigenia	64	·3	0.81	1.30	1.33	3.45
Zygia stevensonii	22	1	1.83	0.43	1.11	3.37
Protium copal	31	3	0.81	1.30	1.03	3.15
Pouteria campechiana	16	3	0.81	1.30	0.98	3.10
Pseudolmedia glabrata	17	4	0.81	1.74	0.49	3.04
Heliocarpus donell-smithii	10	, 2 ,	1.02	0.87	1.05	2.93
Gymnopodium floribundum	26-	3 %	0.61	1.30	0.91	2.83
Randia longiloba	64	2	0.81	0.87	1.13	2.82
Manilkara sapota	48	3	0.61	1.30	0.82	2.74
Semialarium mexicanum	1.1	3	0.61	1.30	0.54	2.45
Haematoxylum campechianum	13	2	0.61	0.87	0.92	2.41
Eugenia bumelioides	14	3	0.61	1.30	0.38	2.30
Simira salvadorensis	20 6	- 1 and 2 and a	0.81	~	0.57	2.26
Elaeodendron xylocarpum	3.2	: : 3° > .	0.61	1.30	0.27	2.18
Swartzia cubensis	15	2	0.61	0.87	0.70	2.18
Psidium sartorianum	17	734 3 044	0.61	1.30	0.26	2.18
Cascabela gaumeri	16	2	0.61	0.87	0.69	2.17
Thouinia paucidentata	15	2	0.61	0.87	0.47	1.95
Diphysa carthagenensis	13	. 1	0.61	0.43	0.91	1.95
Laetia thamnia	19	1000	0.81	0.43	0.68	1.93
Zuelania guidonia	28	2 - 2	0.41	0.87	0.57	1.85
Trophis racemosa	10	2 2	0.41	0.87	0.55	1.83
Ardisia escallonioides	16	2	0.61	0.87	0.33	1.81
Swietenia macrophylla	32	2	0.41	0.87	0.53	1.81
Sapranthus campechianus	9		0.41	0.87	0.53	1.81
Cupania belizensis	15	_{	0.61	0.87	0.31	1.79
Guarea petenensis	24	2	0.41	0.87	0.47	1.75
Diospyros sp.	29	1	0.41	0.43	0.87	1.71
Matayba oppositifolia	14	2	0.41	0.87	0.31	1.59
Crossopetalum gaumeri	10	1.	0.41	0.43	0.75	1.59
Neea psychotrioides	Pages at 1	. 2	0.41	0.87	0.28	1.56
Cecropia peltata	18	1	0.81	0.43	0.30	1.55
Guazuma ulmifolia	32	1	0.41	0.43	0.49	1.33
Dendropanax arboreus	11	. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.20	0.43	0.55	1.19
Nectandra sp	8	1	0.20	0.43	0.50	
Pimienta dioica	9	1	0.20	0.43	0.46	1.14
Randia sp.	13	4.91 S	0.41			1.10
Calyptranthes karlingii	14	7222223	0.41	1	©	1.04
Clusia rosea	110	1	0.41		0.20	1.04
Krujiodendron ferreum	6	1	0.41	0.43	0.19	1.03
Lonchocarpus castilloi	7	1		0.43	0.29	0.93
Platymiscium yucatanum	6	1	0.20	0.43	0.27	0.91
Hampea stipitata	5		0.20	0.43	0.24	0.88
Dalbergia glabra		1	0.20	0.43	0.19	0.83
- zanoci giu giuniu	8	1	0.20	0.43	0.17	0.81

Av. Progreso N° 3, Edificio 3, Planta Alta, Col. del Carmen, Delegación Coyoacán, Ciudad de México, C.P. 04100 Tels: (55) 54 84 35 05, 67 y 68 <u>www.gob.mx/semarnat</u>

Oficio N° SGPA/DGGFS/712/0789/17

Especie	Densidad	frecuencia	Densidad Rel	Frecuencia Rel	Dominancia Rel	וענ
Coutarea hexandra	4	1	0.20	0.43	0.16	0.80
Pluchea odorata	6	1	0.20	0.43	0.16	
Caesalpinia gaumeri	9	1	0.20	0.43	0.13	0.80 0.77
Drypetes laterifolia	7	1	0.20	0.43	0.13	0.77
Pisonia aculetata	7	1	0.20	0.43	0.13	0.77
Senna racemosa	8	1	0.20	0.43	0.13	0.77
Stemmadenia donnell-smithii	6	1	0.20	0.43	0.13	0.77
Ehretia tinifolia	7	I	0.20	0.43	0.13	0.76
Bunchosia swartziana	9	1	0.20	0.43	0.13	
Coccoloba acapulcensis	8	1	0.20	0.43	0.12	0.76 0.76
Randia aculeata	8	1	0.20	0.43	0.12	
Caesalpinia sp	8	1	0.20	0.43	0.10	0.74
Jatropha gaumeri	8	1	0.20	0.43	0.07	0.71 0.71


Índice de Valor de Importancia (IVI) para la selva baja subcaducifolia en el área de cambio de uso de suelo.

En el caso de esta vegetación, se observó que en general para toda el área de estudio Croton arboreus figura como la especie con mayor VIR, principalmente debido a su alta densidad y dominancia. Si bien no se trata de una especie que se encuentra en la totalidad de los sitios, tiene una alta frecuencia relativa, además de que hay que considerar que en la selva mediana es también una de las especies mejor distribuidas. Para el ecosistema de selva baja se observó también que Coccoloba cozumelensis se encuentra bien representada, aunque no presenta una dominancia (lo que indica que se trata de ejemplares en desarrollo) como la de C. arboreusni una densidad comparable con C. arboreus, sí se encuentra ampliamente distribuida, obteniéndose su registro en el 90.9% de los casos.

Destaca también en IVI del Pucté (Terminalia buceras), debida principalmente a su dominancia siendo la especie con los árboles mejor desarrollados horizontalmente (diámetro promedio de 18.8 cm con ejemplares registrados de hasta 52 cm de DAP), así como el chechem blanco (Cameraria latifolia), debido principalmente a su abundancia y dominancia relativa. De este modo, se observa que las especies que se encuentran mejor representadas y que más aportan a la estructura del ecosistema, son comunes a este tipo de vegetación, el cual se encuentra en buen estado de conservación para el área del proyecto.

Índice de Valor de Importancia (IVI) de estrato arbóreo de la Selva baja subcaducifolia en el área de cambio de uso suelo.

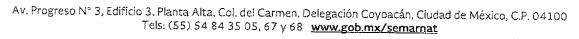
En la división por categorías diamétricas, se observó que el arbolado adulto se encuentra bien representado, siendo en Pucté (Bucida buceras) la especie con mayor valor de

Oficio N° SGPA/DGGFS/712/0789/17

importancia. Si bien no es la especie con mayor número de registros, su desarrollo horizontal le confiere una dominancia relativa en el ecosistema. Esta especie es característica del tipo de vegetación que se describe y conforma el arbolado mejor desarrollado que se observa en el sitio para este tipo de vegetación. La segunda especie con IVI más alto es la Coccoloba Cozumelensis la cual presenta una elevada frecuencia al registrarse en el 71.4% de los sitios inventariados para esta selva.

Otra de las especies relevantes en cuanto a este índice, es el machiche (Lonchocarpus castilloi), la cual también presenta ejemplares arbóreos estructuralmente bien desarrollados por lo que al igual que el pucté los valores de dominancia relativa contribuyen a su elevado IVI. Cabe destacar que esta especie también se encuentra bien representada en la selva mediana subperennifolia. Otras especies con un VIR destacable son Manilkara sapota, Metopium brownei y Haematoxylon campechianum, esta última característica de los bajos inundables, mientras las dos primeras son también especies que se comparten con la selva mediana.

	NEWS AND PARTY OF THE PARTY OF			wale militar spot manual spot sits		57
Especie	Abundancia	Frecuencia	Densidad Rel.	Frecuencia Rel.	Dominancia Rel.	IVI
Terminalia buceras	. 27	6	6.323	4.110	17.489	27.922
Coccoloba cozumelensis	42	10	9.836	6.849	6.356	23.042
Lonchocarpus castilloi	28	5	6.557	3.425	11.650	21.632
Manilkara sapota	<i>§</i> 25 ₹ ∤	6	5.855	× 4.110	8.907	18.871
Metopium brownei	/ 29 🗇	. 6	6.792	4.110	6.319	17.220
Haematoxylum campechianum	14	5	3.279°	3.425	5.851	12.554
Eugenia winzerlingii	24	4 .	5.621	2.740	2.811	11.171
Bursera simaruba	16	. c. > 5	3.747	3.425	2.804	9.976
Lonchocarpus xuul	17	5	3.981	3.425	2.012	9.418
Gymnopodium floribundum	19	. 4	4.450	2.740	2.100	9.290
Caesalpinia gaumeri		2	1.171	1.370	6.267	8.808
Croton arboreus	13	5	3.044	3.425	1.788	8.257
Cameraria latifolia	<u> </u>	3	3,513	2.055	1.918	7.485
Psidium sartorianum	- 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4	2.576	2.740	1.098	6.414
Hyperbaena winzerlingii	5	4	1.171	2.740	1.262	5.173
Jatropha gaumeri	,6	4	1.405	2.740	1.004	5.149
Hampea trilobata	~ * 6 .	4	1.405	2.740	0.700	4.845
Lonchocarpus rugosus	\$ 7	¹	1.639	2.055	0.800	4.494
Vitex gaumeri	4	3	0.937	2.055	1.246	4.237
Eugenia bumelioides	%8 9 **** £	1	2.108	0.685	1.410	4.203
Cascabela gaumeri	9	1	2.108	0.685	1.234	4.026
Guettarda combsii	S 258 000	2	1.874	1.370	0.778	4.021
Byrsonima bucidaefolia	5	aggl:22 % in	1:171	1.370	1.272	3.813
Coccoloba spicata	7	2	1.639	1.370	0.769	3.778
Eugenia sp	4	<i>3</i>	0.937	2.055	0.380	3.372
Allophylus cominia	5	1	1.171	0.685	1.030	2.886



Oficio N° SGPA/DGGFS/712/0789/17

Especie	Abundancia	Frecuencia	Densidad	Frecuencia	Dominiancia	lvi
Guettarda macrosperma			Rel.	Rel.	Rel.	IVI
Cordia dodecandra	4	1	0.937	0.685	1.214	2.836
Lysiloma latisiliquum	3	2	0.703	1.370	0.534	2.607
Diospyros anissandra	3	2	0.703	1.370	0.387	2.460
Plumeria obtusa	3	2	0.703	1.370	0.330	2.402
Swartzia cubensis	2	2	0.468	1.370	0.557	2.395
Semialarium mexicanum	3	2	0.703	1.370	0.315	2.387
	2	2	0.468	1.370	0.504	2.342
Sebastiania adenophora	2	2	0.468	1.370	0.254	2.092
Swietenia macrophylla	2	2	0.468	1.370	0.253	2.092
Elaeodendron xylocarpum	2	2	0.468	1.370	0.246	2.084
Pouteria reticulata	2	2	0.468	1.370	0.240	2.078
Trophis racemosa	.2	2	0.468	1.370	0.234	2.073
Nectandra ambigens	2	2	0,468	1.370	0.148	1.987
Croton reflexifolius	4	1	0.937	0.685	0.350	1.972
Dendropanax arboreus	∞∴3	1	0.703	0.685	0.563	1.951
Matayba oppositifolia	3	. j. 1	0.703	0.685	0.412	1.799
Erythroxylum rotundifolium	3	The Constitution of the Co	- 0.703	0.685	0.334	1.722
Sideroxylon salicifolium	• 1 000	1	0.234	0.685	0.773	1.692
Gliricidia maculata	3. 3.	1 , 1 , 1	0.703	0.685	0.240	1.627
Platymiscium yucatanum		30 x 1 ()	0.234	0.685	0.559	1.478
Eugenia acapulcensis	2 2	1	0.468	0.685	0.229	1.382
Pouteria campechiana	2	1	0.468	0.685	0.202	1.355
Cordia alliodora	2	1	0.468	0.685	0.152	1.306
Lonchocarpus guatemalensis	1	1	0.234	0.685	0.296	1.216
Chrysophyllum mexicanum	1 1 6 A	1	0.234	0.685	0.208	1.127
Diospyros yucatanensis	I .	1	0.234	0.685	0.192	1.111
Zuelania guidonia	. 1 · · · ·	1	0.234	0.685	0.167	1.087
Ouratea lucens	1	I .	0.234	0.685	0.159	1.078
		1 ,	0.234	0.685	0.156	1.075
Havardia albicans	2 3 1 ,	or tell to	0.234	0.685	0.134	1.053
Bonellia macrocarpa	1 16	1	0.234	0.685	0.127	1.033
Caesalpinia yucatanensis	1		0.234	0.685	2 0.103 / p	1.022
Nectandra salicifolia	Togger L. T	1 2	0.234	0.685	0.103	1.022
Buxus bartlettii	T 2000 as	1	0.234	0.685	0.073	0.992
Total general	427	146	100	100	100	
	54 ggras 295 Tg	1 - T 3 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -		Participation of the Control of the	TOO	300

Índice de Valor de Importancia (IVI) del estrato arbustivo de Selva baja subcaducifolia en el área de cambio de uso suelo.

Para el arbolado en regeneración que conforma el estrato arbustivo, se observó una mayor abundancia en general, pero un menor número de especies lo cual se debe a la hegemonía de la especie Croton arboreus, misma que aporta no sólo en número de individuos sino en

SEMARNAT SECRETARÍA DE MEDIO AMBIENTE Y RECURSOS NATURALES

SUBSECRETARÍA DE GESTIÓN PARA LA PROTECCIÓN AMBIENTAL DIRECCIÓN GENERAL DE GESTIÓN FORESTAL Y DE SUELOS

Oficio N° SGPA/DGGFS/712/0789/17

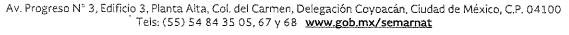
cuando a la dominancia relativa, además de tener una frecuencia del 100% en los sitios de muestreo y ser una especie compartida con la selva mediana. En segunda posición se observa Cameraria latifolia, especie común para el tipo de vegetación y que aporta principalmente por abundancia de ejemplares. Otras especies con un alto IVI, son Metopium brownei y Coccoloba cozumelensis, que al igual que en el caso de Croton arboreus colonizan también las selvas no inundables.

Especie	Abundancia	Frecuencia	Densidad	Frecuencia	Dominancia	IVI
		-	Rel.	Reli	Rel.	
Croton arboreus	272	9	26.543	14.063	22.339	62.945
Cameraria latifolia	130	2	9.259	3.125	9.834	22.218
Metopium brownei	49	4	3.704	6.250	4.017	13.970
Coccoloba cozumelensis	63	2	4.938	3.125	5.760	13.823
Coccoloba acapulcensis	24	1	5.556	, 1.563	6.685	13.803
Lonchocarpus rugosus	51	1	3.704	1:563	5.547	10.813
Eugenia winzerlingii	20	3	2.469 ·	4.688	3.361	10.518
Croton reflexifolius	35 🔅	્રફ્રી હ 2 🛴	3.086	3.125	4.265	10.477
Hampea trilobata	<i>35</i> े	2	3.086	3.12 <i>5</i>	2.801	9.012
Acacia cornigera	64	3	2.469	4.688	1.391	8.547
Byrsonima bucidaefolia	9.6	(1)	3.704	1.563	3.260	8.526
Cecropia peltata	16	13 3 1 5 5	4.321	1.563	2.325	8.208
Havardia albicans	48	[] A 1563	1.852	1.563	4.058	7.472
Ouratea lucens	48	2	1.852	3.125	1.982	6.959
Dalbergia glabra	32	2	1.235	3.125	2.310	6.669
Psidium sartorianum	48	FREE 1.	1.852	1:563	3.135	6.550
Eugenia sp.	32	.2	1.235	3.12 <i>5</i>	1.787	6.146
Guettarda elliptica	48	,	1.852	3:12 <i>5</i>	0.868	5.845
Terminalia buceras	14	2	1.235	3.125	1.280	5.640
Cryosophila stauracantha	. 14	1 1	1.235	1.563	2.096	4.893
Coccoloba spicata	- 14		1.235	1.563	. 1.515	4.312
Calyptranthes karlingii	14	1 1 mi	1.235	1.563	0.886	3.683
Guettarda macrosperma	2° 14	I de la	1.235	1.563	0.747	3.544
Pouteria reticulata	14	Logoration 1	1.235	1.563	0.524	3.321
Randia longiloba	8 - 8	1:55	0.617	1.563	1.002	3.182
Bursera simaruba	8	1	0.617	1.563	0.965	3.145
Lysiloma latisiliquum	8	1	0.617	1.563	0.859	3.039
Eugenia acapulcensis	8 6 2	3300 S 1 F 25	0.617	1.563	0.696	2.876
Haematoxylum campechianum	8	i i i	0.617	1.563	0.550	2.730
Manilkara sapota	6 8 A	1	0.617	1.563	0.374	2.554
Guazuma ulmifolia	8	1	0.617	1.563	0.309	2.489
Gymnopodium floribundum	8	1	0.617	1.563	0.309	2.489
Lonchocarpus sp.	8	res el Lucies.	0.617	1.563	0.309	2.489
Mimosa bahamensis		1 2	0.617	1.563	0.309	2.489
Talisia floresii	8		0.617	1.563	0.289	2.469
Laetia thamnia	8	1	0.617	1.563	0.269	2.449

Oficio N° SGPA/DGGFS/712/0789/17

Total general	1323	64	100	100	100	300
Guettarda sp	8	1	0.617	1.563	0.215	2.395
Diospyros yucatanensis	8	1	0.617	1.563	0.232	2.412
Tabebuia rosea	8	1	0.617	1.563	0.269	2.449
Pithecellobium sp.	8	1	0.617	1.563	0.269	2.449
Especie	Abundancia	Frecuencia	Densidad Rel.	Frecuencia Rel,	Dominancia Rel	ועו

Al comparar el Índice de Valor de Importancia (IVI) por especie de la cuenca hidrológico forestal con la del área de CUSTF, se puede observar que tanto en el área sujeta a CUSTF como en el ecosistema de la cuenca se presenta una composición florística muy similar, ya que prácticamente todas las especies que se localizan en la superficie de cambio de uso de suelo se distribuyen ampliamente en la cuenca, aún y cuando no hayan aparecido en los muestreos de referencia.


Cabe recordar que el IVI es un parámetro que mide el valor de las especies, típicamente, en base a tres parámetros principales: dominancia (ya sea en forma de cobertura o área basal), densidad y frecuencia. El IVI es la suma de estos tres parámetros. Este valor revela la importancia ecológica relativa de cada especie en una comunidad vegetal y es un mejor descriptor que cualquiera de los parámetros utilizados individualmente.

Los resultados obtenidos en cada uno de los sitios de muestreo señalan los valores obtenidos de acuerdo con el número de muestras en cada caso, los 3 sitios en la superficie de CUSTF y los 2 sitios de la cuenca hidrológico forestal, así como en la riqueza de especies registradas en cada caso, por lo que una especie determinada puede tener un valor de importancia alto en un sitio y bajo en el segundo, aun así, la comparación nos da una idea del valor de las especies en la estructura y composición de la comunidad vegetal que en ambos casos corresponde a una vegetación secundaria derivada de Selva mediana subperennifolia.

También es importante señalar que algunas especies sólo se registraran en un sitio y no en el segundo, esto es debido a las características intrínsecas de cada lugar. Se debe recordar que la distribución de las especies no es precisamente homogénea en la naturaleza y depende de varios factores.

Para analizar si la ejecución del CUSTF ocasionará efectos significativos a la cuenca hidrológico forestal, en el área del proyecto se registraron 221 especies de flora que representan el 9.6 % del total registrado para la Península de Yucatán con 2,300 especies (Valdez-Hernández e Islebe 2011).

Por la realización del CUSTF que implica el retiro de ejemplares de flora correspondientes a especies de amplia distribución en la zona: Bursera simaruba, Thevetia gaumeri, Ficus maxima, Metopium brownei, Piscidia piscipula, Lysiloma latisiliquum, Vitex gaumeri, entre

Oficio N° SGPA/DGGFS/712/0789/17

otras. La remoción de estas especies generalistas no pone en peligro a esas poblaciones. De esta forma, por contemplar la afectación de especies de amplia distribución y abundantes en la región, el CUSTF no representa un impacto grave ni amenaza el servicio ambiental de biodiversidad a nivel de poblaciones ni, mucho menos, especies. Se encontró dos especies de flora que serían afectadas por el CUSTF que se enlistan en la NOM-059-SEMARNAT-2010, las especies se encuentran bajo la categoría de riesgo, siendo la vainilla y zamia, mismas especies que están incluidas en el programa de rescate y reubicación de flora, las cuales se reubicarán dentro de las áreas aledañas del proyecto.

En conclusión, basados en el análisis presentado en los cuadros anteriores, se tiene que el proyecto no compromete la diversidad florística local presente en los predios, dado el estado actual del ecosistema que presenta evidencias notables de perturbaciones naturales y antropogénicas. También es importante considerar que tanto en los predios sujetos a cambio de uso de suelo como en el ecosistema de la cuenca hidrológico forestal presentan una composición florística similar, mostrando una condición de vegetación secundaria de Selva mediana subperennifolia y Selva baja subcaducifolia del tipo arbóreo en donde no se distingue por la presencia de especies sobresalientes por pertenecer a ecosistemas en riesgo o por la abundancia de especies protegidas o con distribución restringida.

Fauna

En cuanto a la fauna, la diversidad de los diferentes grupos de vertebrados registrados en el predio, según el índice de Shannon obtenido es notablemente variada. El grupo de las aves resultó por razones obvias el grupo más diverso, registrando un índice de Shannon Wiener (H) de 4.4 para la Selva mediana subperennifolia y 3.8 para la Selva baja subcaducifolia, que se considera como ligeramente alto. Sin embargo, se debe tomar en cuenta que muchas de las especies de aves registradas sólo se observaron en tránsito o se encontraban en los predios sólo con el propósito de alimentarse o en reposo.

En el caso de los reptiles el valor H para la Selva mediana subperennifolia es de 2.4 y 1.8 para Selva baja subcaducifolia; así como en el caso de los mamíferos, dicho índice H equivale a 2.8 y 1.8 respectivamente que se considera medio. El número de especies para ambos grupos faunísticos, sin duda puede aumentar si se incrementa el número de muestreos a lo largo del año. Además, es necesario mencionar que los registros obtenidos en el presente estudio sólo reflejan una parte de las especies que ocurren en un sitio en particular, ya que fluctuaciones estacionales y ambientales en el corto plazo, afectan la posibilidad de observar la mayor parte de los individuos que habitan el área en un momento en particular. (cf. Manzanilla y Péefaur, 2000).

Oficio N° SGPA/DGGFS/712/0789/17

En la diversidad de fauna en el predio tampoco se esperan modificaciones sustanciales y aunque se reporta la distribución de 209 especies de fauna de las cuales 150 son aves, 14 son reptiles y 31 son mamíferos. Un número poco menor a lo registrado en la cuenca hidrológico forestal.

- Las aves presentan hábitos voladores por lo que pueden desplazarse libremente fuera de la zona de aprovechamiento, sin que se vean afectadas de manera alguna.
- En el caso de reptiles y mamíferos, podrán desplazarse a la zona que se mantendrá sin afectación en las áreas colindantes de los predios dentro de la cuenca hidrológico forestal.

Cabe mencionar que se reportan dos especies incluidas en la NOM-059-SEMARNAT-2010, el perico pechisucio (Aratinga nana) y loro frente blanca (Amazona albifrons), que ostentan la categoría de especie Amenazada, a las cuales se les aplicará las medidas de mitigación que permitan redundar en la protección de estos organismos. A este respecto, se implementará un programa de rescate y ahuyentamiento de fauna silvestre que forma parte de las medidas de mitigación del proyecto para evitar su captura, daño o muerte.

	Área sujeta a CUSTF					Cuenca h	idrológic	o forestal
	Grupo faunístico			Grupo faunístico				
	Anfibios	Reptiles	Aves	Mamíferos	Anfibios	Reptiles	Aves	Mamíferos
Riqueza	2	8	150	31		56	170	33
Índice H	1	.8	3.8	1.8	2	2.4	4.4	2.8
Equidad	0.	79	0.94	0.82	0	.76	0.90	0.83

Si bien es cierto que en la superficie del proyecto existe un reducido número de especies con respecto al reconocido para toda la Península y la región, esto es reflejo de la relación especie-área. Por tal motivo, la valoración sobre el criterio de excepcionalidad para demostrar que no se compromete la biodiversidad por el cambio de uso de suelo propuesto dentro del predio del proyecto, se concluye que se tendrá un efecto reducido sobre la riqueza de flora y fauna, lo cual no sólo se motiva con el bajo número de especies protegidas registrado, sino fundamentalmente en los siguientes hechos:

1) Existen pocas especies endémicas; no se presentan especies restringidas; todas las especies tienen intervalos de distribución amplios; las especies registradas también están presentes en muchos otros sitios de la Península y la región, las cuales incluyen diferentes tipos de vegetación algunas incluso se establecen en hábitats naturales e inducidos.

Oficio N° SGPA/DGGFS/712/0789/17

2) La superficie que eventualmente será sometida a cambio de uso del suelo para este proyecto (6,576.65 m²), representa una pequeña fracción del total de las selvas altas, medianas y bajas de la región (estimadas en 2,898,051 hectáreas).

Las especies registradas en el predio no se encuentran establecidas como tal, sino que algunos ejemplares emplean el sitio del proyecto como paso, pernocta y en pocos casos para alimentación; debido a que el predio se encuentra fuertemente presionado por actividades antropogénicas como son infraestructura eléctrica y de vialidad como la Carretera Federal, puesto que al tratarse de un sistema ambiental que aún contiene en gran parte vegetación característica de selvas, dichas especies se encuentran de forma permanente, siendo entonces un lugar con fauna diversa que se distribuye en la superficie que presenta la unidad de análisis del sistema ambiental delimitado.

Como resultado del análisis de las características de las especies de fauna silvestre y su distribución, así como de la extensión y ubicación del proyecto, se concluye que la ejecución del CUSTF no tendrá implicaciones perceptibles sobre la biodiversidad de la cuenca hidrológico forestal. Se anticipan efectos a escala individual, ya que durante las actividades de remoción de la vegetación algunos individuos de especies de lento desplazamiento podrían verse afectados. Pero dicho efecto no sería apreciable en la escala de poblaciones ni especies.

Por lo anterior, con base en los razonamientos arriba expresados, esta autoridad administrativa considera que se encuentra acreditada la primera de las hipótesis normativas establecidas por el artículo 117, párrafo primero, de la Ley General de Desarrollo Forestal Sustentable, en cuanto a que con éstos ha quedado técnicamente demostrado que el desarrollo del proyecto de cambio de uso de suelo en cuestión, no compromete la biodiversidad.

Por lo que corresponde a la segunda de las hipótesis arriba referidas, consistente en la obligación de demostrar que no se provocará la erosión de los suelos, se observó lo siguiente:

En el Documento Técnico Unificado modalidad A (DTU-A) de cambio de uso de suelo en terrenos forestales, se desprende información contenida en diversos apartados del mismo, consistente en que:

La Ecuación Universal de Pérdida de Suelos (USLE), fue desarrollada por Wischmeier (1978), como una metodología para la estimación de la erosión laminar en parcelas pequeñas. Luego de varias modificaciones la ecuación se presenta como una metodología de gran utilidad en la planificación de obras de conservación de suelos.

Oficio N° SGPA/DGGFS/712/0789/17

Se ha considerado que la USLE (Wischmeier, 1978), hasta el momento representa la metodología más idónea para el cálculo de las pérdidas de suelo en tierras agrícolas; por ello, se ha utilizado esta metodología como una guía para la evaluación de acciones en manejo de cuencas, en especial aquellas que conllevan a un cambio del uso de la tierra y manejo de suelos.

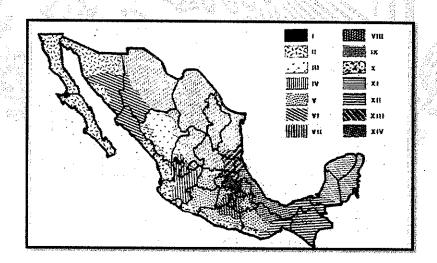
E= R*K*L*S*C*P

Donde:

E = Erosión del suelo en toneladas por hectárea por año (ton/ha, año).

R = Erosividad de la lluvia. Mj/ha (Megajoules/hectárea) mm/hr(milímetros/hora).

K = Erosionabilidad del suelo.


LS = Longitud y grado de pendiente.

C = Factor de vegetación.

P = Factor de prácticas mecánicas.

Para el sitio donde se ubica la Antena repetidora Nº 1.

La erosividad (R) se puede estimar a partir de la precipitación media anual, que para la región donde se ubica la antena repetidora No. 1 es de aproximadamente 1,902.3 mm (estación meteorológica ubicada en el poblado de Nicolás Bravo) multiplicado por las ecuaciones para estimar la erosividad de la lluvia en el estado de Quintana Roo de acuerdo al mapa y tabla proporcionada por el autor donde existen 14 regiones. La región bajo estudio se asocia bajo un número de la región y se consulta una ecuación cuadrática donde a partir de datos de precipitación anual (P) se puede estimar el valor de R.

Av. Progreso N° 3, Edificio 3, Planta Alta, Col. del Carmen, Delegación Coyoacán, Ciudad de México, C.P. 04100 Tels: (55) 54 84 35 05, 67 y 68 <u>www.gob.mx/semarnat</u>

Oficio N° SGPA/DGGFS/712/0789/17

Mapa de Modelos de Erosividad por regiones de la República Mexicana.

Región	Ecuación	R2
· I	R = 1.2078P + 0.002276P2	0.92
	R = 3.4555P + 0.006470P2	0.93
	R = 3.6752P - 0.001720P2	0.94
IV	R = 2.8559P + 0.002983P2	0.92
V	R = 3.4880P - 0.00088P2	0.94
VI	R = 6.6847P + 0.001680P2	0.9
VII	R = -0.0334P + 0.006661P2	0.98
VIII	R = 1.9967P + 0.003270P2	0.98
IX	R = 7.0458P - 0.002096P2	0.97
X	R = 6.8938P + 0.000442P2	0.95
XI 💮	R = 3.7745P + 0.004540P2	0.98
XII	R = 2.4619P + 0.006067P2	0.96
XIII	R = 10.7427P - 0.00108P2	0.97
XIV	R = 1.5005P + 0.002640P2	0.95

Ecuaciones para estimar la Erosividad de la lluvia (R) en las diferentes regiones del país.

De acuerdo a la zonificación regional del país en área de estudio corresponde a la región XI, por lo que la fórmula utilizada fue R=3.7745P+0.004540P2.

Considerando una precipitación media anual de 1,902.3 mm, éste será el valor de P. Por lo anterior y sustituyendo los datos tenemos que:

 $R = 3.77448 (1,902.3) + 0.004540 (1,902.3)^{2}$

R = 7,180.23 + 16,429.10.

R= 23,609.33 Mj/ha mm/hr.

La erosionabilidad del suelo (K) se estima a partir de la textura de los suelos presentes y la cantidad de materia orgánica.

Con datos de la textura de los suelos y contenido de materia orgánica, se estima el valor de erosionabilidad (K). (Morgan 1986).

Oficio N° SGPA/DGGFS/712/0789/17

Textura	% (le materia orgái	nica
	0.0 - 0.5	0.5 - 2.0	2.0 - 4.0
Arcillo arenosa	0.014	0.013	0.012
Arcillo limosa	0.025	0.023	0.019
Arena	0.005	0.003	0.002
Arena fina	0.016	0.014	0.010
Arena fina migajosa	0.024	0.020	0.016
Arena migajosa	0.012	0.010	0.008
Arena muy fina	0.042	0.036	0.028
Arena muy fina migajosa	0.044	0.038	0.030
Limo	0.060	0.052	0.042
Migajón	0.038	0.034	0.029
Migajón arcillo arenosa	0.027	0.025	0.021
Migajón arcíllo limosa	0.037	0.032	0.026
Migajón arcillosa	0.028	0.025	0.021
Migajón arenosa	0.027	0.024	0.019
Migajón arenosa fina	0.035	0.030	0.024
Migajón arenosa muy fina	0.047	0.041	0.033
Migajón limoso	0.048	0.042	. 0.033
Arcilla	-	0.013029	

Erosionabilidad del suelo (K), en función de la textura y contenido de materia orgánica.

El área donde se pretende llevar a cabo la implementación de la Antena No.1 propuesta para el cambio de uso de suelo, corresponde a un Litosol con Rendzina (conforme a la carta edafológica del INEGI), que es un suelo caracterizado como permeable, calcáreo con arcilla y textura media; la vegetación está constituida principalmente por selvas; al consultar la guía para la interpretación de cartografía de edafología, señala que este tipo de suelo y de acuerdo con la tabla de Erosionabilidad de los suelos, el porcentaje de materia orgánica va de 0.013-0.029; para el presente ejercicio se consideró el valor de K = 0.013, en virtud de que es un área que no cuenta con abundante materia orgánica.

La longitud y grado de pendiente.

La pendiente del terreno afecta los escurrimientos superficiales imprimiéndoles velocidad. El tamaño de las partículas, así como la cantidad de material que el escurrimiento puede desprender o llevar en suspensión, son una función de la velocidad con la que el agua fluye sobre la superficie.

Oficio N° SGPA/DGGFS/712/0789/17

Se estima a partir de la siquiente fórmula:

$$S = \frac{H_a - H_b}{L}$$

Donde:

S= Pendiente media del terreno (%).

Ha= Altura de la parte alta del terreno (m).

Hb= Altura de la parte baja del terreno (m).

L= Longitud del terreno (m).

De acuerdo con el levantamiento topográfico en la superficie de cambio de uso de suelo donde se ubica la antena repetidora N° 1 sería de:

La altura de la parte alta del terreno es de 10 msnm.

La altura de la parte baja del terreno es de 5 msnm.

La longitud del terreno analizada es de 480 m (dirección este).

Entonces tenemos:

S = 10 - 5/480

S = 2/480.

S = 0.0104(100).

S = 1.04 %

Al conocer la pendiente y la longitud de la pendiente, entonces el factor LS se calcula como:

LS: $(\lambda)^m (0.0138 + 0.00965 (s) + 0.00138 (s)^2)$

 λ = Longitud de la pendiente.

Oficio N° SGPA/DGGFS/712/0789/17

S= Pendiente media del terreno.

M= Parámetro cuyo valor es 0.5.

De acuerdo con los resultados obtenidos y sustituyendo los valores en la fórmula tenemos:

 $LS = (480)^{0.5} (0.0138 + 0.00965 (1.04) + 0.00138 (1.04)^{2}).$

LS = (21.9)(0.024 + 0.0014).

LS = (21.9)(0.0254).

LS = 0.55.

Por consiguiente, la erosión potencial es: E=R*K*LS.

E= 23,609.33 * 0.013 * 0.55.

E= 168.80 ton/ha/año.

De acuerdo al valor obtenido de erosión actual en suelo sin vegetación y sin prácticas de conservación del suelo y del agua, lo que significa que anualmente se perdería una lámina de suelo de 16.8 mm, si consideramos que 1 mm de suelo es igual a10 ton/ha de suelo.

Factor de protección de la vegetación C.

El factor de protección C se estima dividiendo las pérdidas de suelo de un lote con un cultivo de interés y las pérdidas de suelo de un lote desnudo. Los valores de C son menores que la unidad y en promedio indican que a medida que aumenta la cobertura del suelo el valor de C se reduce y puede alcanzar valores similares a 0, por ejemplo, cuando existe una selva con una cobertura vegetal alta.

Los valores de C que se reportan para diferentes partes del mundo y para México se presentan en el siguiente cuadro:

Tabla de Valores de C que se pueden utilizar para estimar pérdidas de suelo.

Athent Index (466, refer to a commence and commence	J Pacaci denza: para esennar	perunua uc	Sucio.
	Nivel de Produc	tividad	
Cultivo	Alto	Moderado	Bajo
Maíz	0.54	0.62	0.80
Maíz labranza cero	0.05	0.10	0.15
Maíz rastrojo	0.10	0.15	0.20

Oficio N° SGPA/DGGFS/712/0789/17

Algodón	0.30	0.42	0.49
Pastizal	0.004	0.01	0.10
Alfalfa	0.020	0.050	0.10
Trébol	0.025	0.050	0.10
Sorgo grano	0.43	0.55	0.70
Sorgo grano rastrojo	0.11	0.18	0.25
Soya	0.48		
Soya después de maíz con rastrojo	0.18		
Trigo	0.15	0.38	0.53
Trigo rastrojo	0.10	0.18	0.25
Bosque natural	0.001	0.01	0.10
Sabana en buenas condiciones	0.01	0.54	
Sabana sobrepastoreada	0.1	0.22	
Maíz - sorgo, Mijo	0.4 a 0.9		
Arroz	0.1 a 0.2		
Algodón, tabaco	0.5 a 0.7	gall's ag	
Cacahuate (%	0.4 a 0.8	Martine Co.	
Palma, cacao, café	0.1 a 0.3		
Piña	0.1 a 0.3		
Bosques área cubierta del 100 al 75%	0,003 - 0.011		i.
Bosques área cubierta del 75 al 45 %	0.010 - 0.040		
Bosques área cubierta del 25 al 45% con	0.41		
residuos		140.54 h.	
Bosques área cubierta del 25 al 45% sin residuos			A Section
Tesiquos or a servicio de la companya de la company	A USE C US A PROPERTY	Jak A Balleta	17

E= 168.80 * factor de vegetación.

E= 168.80 * 0.001.

E= 0.16 toneladas/ha/año.

De acuerdo con los cálculos realizados en los apartados anteriores, la erosión neta para el predio con vegetación es de 0.16 toneladas/ha/año, lo que significa que anualmente se pierde una lámina de suelo de 0.016 mm.

Asumiendo que el desmonte previsto se delimita a la superficie de ocupación del proyecto y se mantendrán áreas de conservación, además de que se pretende realizar actividades de reforestación y enriquecimiento en dicha superficie; el factor de erosión se reduce a 0.16 toneladas/ha/año mismo que se encuentra muy por debajo de la media permisible que es de 10 t/ha/año que es el máximo para México. Por consiguiente, la erosión estimada por el desarrollo del proyecto será escasamente significativa y por lo tanto el proyecto es factible ya que no se está sobrepasando el límite establecido. Entonces se tiene que la remoción de

Oficio N° SGPA/DGGFS/712/0789/17

Región	Ecuación	R2
1	R = 1.2078P + 0.002276P2	0.92
	R = 3.4555P + 0.006470P2	0.93
	R = 3.6752P - 0.001720P2	0.94
IV	R = 2.8559P + 0.002983P2	0.92
V	R = 3.4880P - 0.00088P2	0.94
VI	R = 6.6847P + 0.001680P2	0.9
VII	R = -0.0334P + 0.006661P2	0.98
VIII	R = 1.9967P + 0.003270P2	0.98
IX	R = 7.0458P - 0.002096P2	0.97
X	R = 6.8938P + 0.000442P2	0.95
XI	R = 3.7745P + 0.004540P2	0.98
XII	R = 2.4619P + 0.006067P2	0.96
XIII	R = 10.7427P - 0.00108P2	0.97
XIV	R = 1.5005P + 0.002640P2	0.95

Ecuaciones para estimar la Erosividad de la lluvia (R) en las diferentes regiones del país.

De acuerdo a la zonificación regional del país, el área de estudio corresponde a la región XI, por lo que la fórmula utilizada fue $R = 3.7745P + 0.004540P^2$.

Considerando una precipitación media anual de 1,500 mm, este será el valor de P. Por lo anterior y sustituyendo los datos tenemos que:

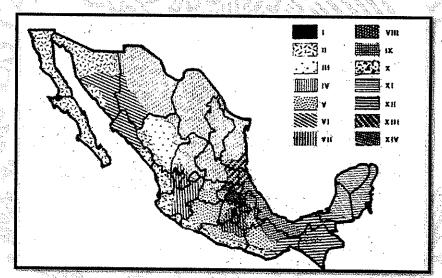
 $R = 3.77448 (1,500) + 0.004540 (1,500)^{2}$

R = 5,661.6 + 10,215

R= 15,876.6 Mj/ha mm/hr.

La erosionabilidad del suelo (K) se estima a partir de la textura de los suelos presentes y la cantidad de materia orgánica.

Con datos de la textura de los suelos y contenido de materia orgánica, se estima el valor de erosionabilidad (K). (Morgan 1986).



Oficio N° SGPA/DGGFS/712/0789/17

la vegetación se llevará a cabo en la superficie 2,929.94 m², siendo ésta una superficie relativamente pequeña, contribuyendo de esta forma a la conservación y mantenimiento de las características bióticas y abióticas naturales que persisten en todo el sistema ambiental delimitado y en la cuenca con variaciones apenas visibles, así mismo, se deben tomar en cuenta las medidas de prevención y mitigación que se plantean en el capítulo X del Documento Técnico Unificado modalidad A.

Para el sitio donde se ubica la Antena Repetidora Nº 2.

La erosividad (R) se puede estimar a partir de la precipitación media anual que para la región donde se ubica la antena repetidora No. 2 es de aproximadamente 1,500 mm (estación meteorológica municipio de Calakmul, Campeche, ya que es la más próxima al área donde se ubicará dicha antena), multiplicado por las ecuaciones para estimar la erosividad de la lluvia en el estado de Campeche de acuerdo al mapa y tabla proporcionada por el autor, donde existen 14 regiones. El área bajo estudio se asocia bajo un número de la región y se consulta una ecuación cuadrática donde a partir de datos de precipitación anual (P) se puede estimar el valor de R

Mapa de Modelos de Erosividad por regiones de la República Mexicana.

Oficio N° SGPA/DGGFS/712/0789/17

Textura	% (le materia orgái	nica
	0.0 - 0.5	0.5 - 2.0	2.0 - 4.0
Arcillo arenosa	0.014	0.013	0.012
Arcillo limosa	0.025	0.023	0.019
Arena	0.005	0.003	0.002
Arena fina	0.016	0.014	0.010
Arena fina migajosa	0.024	0.020	0.016
Arena migajosa	0.012	0.010	0.008
Arena muy fina	0.042	0.036	0.028
Arena muy fina migajosa	0.044	0.038	0.030
Limo	0.060	0.052	0.042
Migajón	0.038	0.034	0.029
Migajón arcillo arenosa	0.027	0.025	0.021
Migajón arcillo limosa	0.037	0.032	0.026
Migajón arcillosa	0.028	0.025	0.021
Migajón arenosa	0.027	0.024	0.019
Migajón arenosa fina	0.035	0.030	0.024
Migajón arenosa muy fina	0.047	0.041	0.033
Migajón limoso	0.048	0.042	0.033
Arcilla		0.013029	

Erosionabilidad del suelo (K), en función de la textura y contenido de materia orgánica.

El área donde se pretende llevar a cabo la implementación de la Antena N° 2 propuesta para el Cambio de Uso de Suelo, corresponde a un Regosol (conforme a la carta edafológica del INEGI), es un suelo caracterizado como permeable, poco desarrollado, constituido por material, en general son claros o pobres en materia orgánica, se parecen bastante a la roca que les da origen; al consultar la guía para la interpretación de cartografía de edafología, señala que este tipo de suelo y de acuerdo con la tabla de Erosionabilidad de los suelos, el porcentaje de materia orgánica va de 0.013-0.029; para el presente ejercicio se considera el valor de K = 0.013, en virtud de que es un área que no cuenta con abundante materia orgánica.

La longitud y grado de pendiente.

La pendiente del terreno afecta los escurrimientos superficiales imprimiéndoles velocidad. El tamaño de las partículas, así como la cantidad de material que el escurrimiento puede desprender o llevar en suspensión, son una función de la velocidad con la que el agua fluye sobre la superficie.

Se estima a partir de la siguiente fórmula:

$$S = \frac{H_a - H_b}{L}$$

. Av. Progreso N° 3, Edificio 3, Planta Alta, Col. del Carmen, Delegación Coyoacán, Ciudad de México, C.P. 04100
Tels: (55) 54 84 35 05, 67 γ 68 <u>www.gob.mx/semarnat</u>

Oficio N° SGPA/DGGFS/712/0789/17

Donde:

S= Pendiente media del terreno (%).

Ha= Altura de la parte alta del terreno (m).

Hb= Altura de la parte baja del terreno (m).

L= Longitud del terreno (m).

De acuerdo con el levantamiento topográfico en la superficie de cambio de uso de suelo donde se ubica la antena repetidora N° 2 sería de:

La altura de la parte alta del terreno es de 8 msnm.

La altura de la parte baja del terreno es de 5 msnm.

La longitud del terreno analizada es de 420 m (dirección al Este).

Entonces tenemos:

S = 8 - 5/420.

S=2/420.

S = 0.007 (100).

S = 0.71%.

Al conocer la pendiente y la longitud de la pendiente, entonces el factor LS se calcula como:

LS: $(\lambda)^m (0.0138 + 0.00965 (s) + 0.00138 (s)^2)$.

 λ = Longitud de la pendiente.

S= Pendiente media del terreno.

M= Parámetro cuyo valor es 0.5.

Oficio N° SGPA/DGGFS/712/0789/17

De acuerdo con los resultados obtenidos y sustituyendo los valores en la fórmula tenemos:

 $LS = (420)^{0.5} (0.0138 + 0.00965 (0.71) + 0.00138 (0.71)^{2}).$

LS = (20.49)(0.0209 + 0.00069).

LS = (20.49)(0.0215).

LS = 0.44.

Por consiguiente, la erosión potencial es: E=R*K*LS.

E= 15,876.6 * 0.013 * 0.44.

E=90.8 ton/ha/año.

De acuerdo al valor obtenido de erosión actual en suelo sin vegetación y sin prácticas de conservación del suelo y de agua, lo que significa que anualmente se perdería una lámina de suelo de 9.08 mm, si consideramos que 1 mm de suelo es igual a 10 ton/ha de suelo.

Factor de protección de la vegetación C.

El factor de protección C se estima dividiendo las pérdidas de suelo de un lote con un cultivo de interés y las pérdidas de suelo de un lote desnudo. Los valores de C son menores que la unidad y en promedio indican que a medida que aumenta la cobertura del suelo el valor de C se reduce y puede alcanzar valores similares a O, por ejemplo, cuando existe una selva con una cobertura vegetal alta.

Los valores de C que se reportan para diferentes partes del mundo y para México se presentan en el siguiente cuadro:

Tabla de Valores de C que se pueden utilizar para estimar pérdidas de suelo.

Cultivo		internal Property	4. 生物	Alto	Moderado	Bajo
Maíz	Vi Maril Roman Oloman William			0.54	0.62	0.80
	ranza cero		Sugar a page	0.05	0.10	0.15
Maiz ras		ang Arty, 1834.		0.10	0.15	0.20
Algodón	rie.	wan wa dijak		0.30	0.42	0.49
Pastizal			grafi sib oge.	0.004	0.01	0.10
Alfalfa			par an shirt	0.020	0.050	0.10
Trébol				0.025	0.050	0.10

Oficio N° SGPA/DGGFS/712/0789/17

Sorgo grano	0.43	0.55	0.70
Sorgo grano rastrojo	0.11	0.18	0.25
Soya	0.48		
Soya después de maíz con rastrojo	0.18		
Trigo	0.15	0.38	0.53
Trigo rastrojo	0.10	0.18	0.25
Bosque natural	0.001	0.01	0.10
Sabana en buenas condiciones	0.01	0. <i>54</i>	
Sabana sobrepastoreada	0.1	0.22	
Maíz - sorgo, Mijo	0.4 a 0.9		
Arroz	0.1 a 0.2		
Algodón, tabaco	0.5 a 0.7		
Cacahuate	0.4 a 0.8		
Palma, cacao, café	0.1 a 0.3		
Piña	0.1 a 0.3		
Bosques área cubierta del 100 al 75%	0,003 - 0.011		
Bosques área cubierta del 75 al 45 %	0.010 - 0.040	rither is	
Bosques área cubierta del 25 al 45% con	0.41	The state of the s	
residuos	Age was tree appearan		
Bosques área cubierta del 25 al 45% sin residuos	0.84		3
	1 	Harrier Committee	

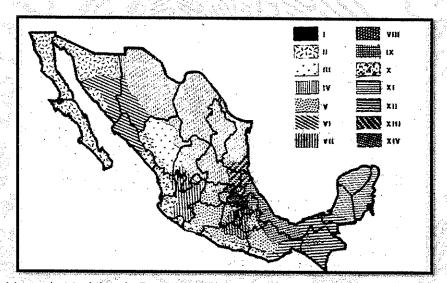
E= 90.8 * factor de vegetación.

E= 90.8 * 0.001.

E= 0.9 toneladas/ha/año.

De acuerdo con los cálculos realizados en los apartados anteriores, la erosión neta para el predio con vegetación es de 0.09 toneladas/ha/año, lo que significa que anualmente se pierde una lámina de suelo de 0.009 mm.

Asumiendo que el desmonte previsto se delimita a la superficie de ocupación del proyecto y se mantendrán áreas de conservación, además de que se pretende realizar actividades de reforestación y enriquecimiento en dicha superficie; el factor de erosión se reduce a 0.09 toneladas/ha/año mismo que se encuentra muy por debajo de la media permisible que es de 10 t/ha/año que es el máximo para México. Por consiguiente, la erosión estimada por el desarrollo del proyecto será escasamente significativa y por lo tanto el proyecto es factible, ya que no se está sobrepasando el límite establecido. Entonces se tiene que la remoción de la vegetación se llevará a cabo en la superficie 2365.32 m², siendo ésta una superficie relativamente pequeña, contribuyendo de esta forma a la conservación y



Oficio N° SGPA/DGGFS/712/0789/17

mantenimiento de las características bióticas y abióticas naturales que persisten en todo el sistema ambiental delimitado y en la cuenca con variaciones apenas visibles, así mismo, se deben tomar en cuenta las medidas de prevención y mitigación que se plantean para el proyecto.

Para el sitio donde se ubica la Antena Repetidora Nº 3.

La erosividad (R) se puede estimar a partir de la precipitación media anual que para la región donde se ubica la antena repetidora No. 3 es de aproximadamente 1,500 mm (estación meteorológica municipio de Calakmul, Campeche, ya que es la más próxima al área donde se ubicara dicha antena), multiplicado por las ecuaciones para estimar la erosividad de la lluvia en el estado de Campeche, de acuerdo al mapa y tabla proporcionada por el autor, donde existen 14 regiones. El área bajo estudio se asocia bajo un número de la región y se consulta una ecuación cuadrática donde a partir de datos de precipitación anual (P) se puede estimar el valor de R.

Mapa de Modelos de Erosividad por regiones de la República Mexicana.

SI Si

SUBSECRETARÍA DE GESTIÓN PARA LA PROTECCIÓN AMBIENTAL DIRECCIÓN GENERAL DE GESTIÓN FORESTAL Y DE SUELOS

Oficio N° SGPA/DGGFS/712/0789/17

Región	Ecuación	R2
1	R = 1.2078P + 0.002276P2	0.92
	R = 3.4555P + 0.006470P2	0.93
	R = 3.6752P - 0.001720P2	0.94
IV	R = 2.8559P + 0.002983P2	0.92
V	R = 3.4880P - 0.00088P2	0.94
VI	R = 6.6847P + 0.001680P2	0.9
VII	R = -0.0334P + 0.006661P2	0.98
VIII	R = 1.9967P + 0.003270P2	0.98
IX	R = 7.0458P - 0.002096P2	0.97
X	R = 6.8938P + 0.000442P2	0.95
XI	R = 3.7745P + 0.004540P2	0.98
XII	R = 2.4619P + 0.006067P2	0.96
XIII	R = 10.7427P - 0.00108P2	0.97

Ecuaciones para estimar la Erosividad de la lluvia (R) en las diferentes regiones del país.

De acuerdo a la zonificación regional del país, el área de estudio corresponde a la región XI, por lo que la fórmula utilizada fue $R = 3.7745P + 0.004540P^2$.

Considerando una precipitación media anual de 1,500 mm, este será el valor de P. Por lo anterior y sustituyendo los datos tenemos que:

 $R = 3.77448 (1,500) + 0.004540 (1,500)^{2}$

 $R = 5,661.6 \pm 10,215.$

R= 15,876.6 Mj/ha mm/hr.

La erosionabilidad del suelo (K) se estima a partir de la textura de los suelos presentes y la cantidad de materia orgánica.

Con datos de la textura de los suelos y contenido de materia orgánica, se estima el valor de erosionabilidad (K). (Morgan 1986).

Oficio N° SGPA/DGGFS/712/0789/17

Textura	% de materia orgánica			
	0.0 - 0.5	0.5 - 2.0	2.0 - 4.0	
Arcillo arenosa	0.014	0.013	0.012	
Arcillo limosa	0.025	0.023	0.019	
Arena	0.005	0.003	0.002	
Arena fina	0.016	0.014	0.010	
Arena fina migajosa	0.024	0.020	0.016	
Arena migajosa	0.012	0.010	0.008	
Arena muy fina	0.042	0.036	0.028	
Arena muy fina migajosa	0.044	0.038	0.030	
Limo	0.060	0.052	0.042	
Migajón	0.038	0.034	0.029	
Migajón arcillo arenosa	0.027	0.025	0.021	
Migajón arcillo límosa	0.037	0.032	0.026	
Migajón arcillosa	0.028	0.025	0.021	
Migajón arenosa	0.027	0.024	0.019	
Migajón arenosa fina	0.035	0.030	0.024	
Migajón arenosa muy fina	0.047	0.041	0.033	
Migajón limoso	0.048	0.042	0.033	
Arcilla	0.013029			

Erosionabilidad del suelo (K), en función de la textura y contenido de materia orgánica.

El área donde se pretende llevar a cabo la implementación de la Antena N° 3 propuesta para el Cambio de Uso de Suelo, corresponde a una Pheozem (conforme a la carta edafológica del INEGI), es un suelo caracterizado por que presenta un horizonte mólico y tiene saturación de bases mayor de 50%, textura arenosa franca gruesa hasta los 100 cm de profundidad, no presentan carbonato de calcio a menos que presente una capa contrastante (contacto lítico o un horizonte petrocálcico) entre los 25 y 100 cm sus horizontes; al consultar la guía para la interpretación de cartografía de edafología, señala que este tipo de suelo y de acuerdo con la tabla de Erosionabilidad de los suelos, el porcentaje de materia orgánica va de 0.013-0.029; para el presente ejercicio se considera el valor de K = 0.012, en virtud de que es un área que cuenta con abundante materia orgánica.

La longitud y grado de pendiente.

La pendiente del terreno afecta los escurrimientos superficiales imprimiéndoles velocidad. El tamaño de las partículas, así como la cantidad de material que el escurrimiento puede desprender o llevar en suspensión, son una función de la velocidad con la que el agua fluye sobre la superficie.

Oficio N° SGPA/DGGFS/712/0789/17

Se estima a partir de la siguiente fórmula:

$$S = \frac{H_a - H_b}{L}$$

Donde:

S= Pendiente media del terreno (%).

Ha= Altura de la parte alta del terreno (m).

Hb= Altura de la parte baja del terreno (m).

L= Longitud del terreno (m).

De acuerdo con el levantamiento topográfico en la superficie de cambio de uso de suelo donde se ubica la antena repetidora N° 3 sería de:

La altura de la parte alta del terreno es de 12 msnm.

La altura de la parte baja del terreno es de 7 msnm.

La longitud del terreno analizada es de 156 m (dirección este).

Entonces tenemos:

S = 12 - 7/156.

S = 5/156.

S = 0.032 (100).

S = 3.2 %.

Al conocer la pendiente y la longitud de la pendiente, entonces el factor LS se calcula como:

LS: $(\lambda)^m (0.0138 + 0.00965 (s) + 0.00138 (s)^2)$.

Oficio N° SGPA/DGGFS/712/0789/17

 λ = Longitud de la pendiente.

S= Pendiente media del terreno.

M= Parámetro cuyo valor es 0.5.

De acuerdo con los resultados obtenidos y sustituyendo los valores en la fórmula tenemos:

 $LS = (156)^{0.5} (0.0138 + 0.00965 (3.2) + 0.00138 (3.2)^{2}).$

LS = (12.48)(0.0308 + 0.0141).

LS = (12.48)(0.044).

LS = 0.56.

Por consiguiente, la erosión potencial es: E = R * K * LS

E= 15,876.6 * 0.012 * 0.56

E= 106.69 ton/ha/año.

De acuerdo al valor obtenido de erosión actual es considerando un suelo sin vegetación y sin prácticas de conservación del suelo y de agua, lo que significa que anualmente se perdería una lámina de suelo de 10.6 mm, si consideramos que 1 mm de suelo es igual a 10 ton/ha de suelo.

Factor de protección de la vegetación C.

El factor de protección C se estima dividiendo las pérdidas de suelo de un lote con un cultivo de interés y las pérdidas de suelo de un lote desnudo. Los valores de C son menores que la unidad y en promedio indican que a medida que aumenta la cobertura del suelo el valor de C se reduce y puede alcanzar valores similares a 0, por ejemplo, cuando existe una selva con una cobertura vegetal alta.

Los valores de C que se reportan para diferentes partes del mundo y para México se presentan en el siguiente cuadro:

Oficio N° SGPA/DGGFS/712/0789/17

Tabla de Valores de C que se pueden utilizar para estimar pérdidas de suelo.

	Nivel de Produc	ividad.	
Cultivo	Alto	Moderado	Bajo
Maíz	0.54	0.62	0.80
Maíz labranza cero	0.05	0.10	0.15
Maíz rastrojo	0.10	0.15	0.20
Algodón	0.30	0.42	0.49
Pastizal	0.004	0.01	0.10
Alfalfa	0.020	0.050	0.10
Trébol	0.025	0.050	0.10
Sorgo grano	0.43	0.55	0.70
Sorgo grano rastrojo	0.11	0.18	0.25
Soya	0.48		
Soya después de maiz con rastrojo	0.18		
Trigo	0.15	0.38	0.53
Trigo rastrojo	0.10	0.18	0.25
Bosque natural	-0.001	0.01	0.10
Sabana en buenas condiciones	0.01	0.54	
Sabana sobrepastoreada	0.1	0.22	16.
Maíz - sorgo, Mijo	0.4 a 0.9		
Arroz	0.1 a 0.2		
Algodón, tabaco	0.5 a 0.7		
Cacahuate	0.4 a 0.8		\$ 1.00 m
Palma, cacao, café	0.1 a 0.3		the profiles of
Piña	0.1 a 0.3	ESE SE L'AMBRE	
Bosques área cubierta del 100 al 75%	0,003 - 0.011		11.5
Bosques área cubierta del 75 al 45 %	0.010 - 0.040		la principal
Bosques área cubierta del 25 al 45% con	0.41		
residuos			4.69
Bosques área cubierta del 25 al 45% sin	0.84		
residuos			
	120 King 1 & Walter 25 18 18 18 18 18 18 18 18 18 18 18 18 18	W. You He will	175 175

E= 106.69 * factor de vegetación.

E= 106.69 * 0.001.

E= 0.106 toneladas/ha/año.

De acuerdo con los cálculos realizados en los apartados anteriores, la erosión neta para el predio con vegetación es de 0.106 toneladas/ha/año, lo que significa que anualmente se pierde una lámina de suelo de 0.0106 mm.

Oficio N° SGPA/DGGFS/712/0789/17

Asumiendo que el desmonte previsto se delimita a la superficie de ocupación del proyecto y se mantendrán áreas de conservación, además de que se pretende realizar actividades de reforestación y enriquecimiento en dicha superficie; el factor de erosión se reduce a 0.0106 toneladas/ha/año mismo que se encuentra muy por debajo de la media permisible que es de 10 t/ha/año que es el máximo para México. Por consiguiente, la erosión estimada por el desarrollo del proyecto será escasamente significativa y por lo tanto el proyecto es factible ya que no se está sobrepasando el límite establecido. Entonces se tiene que la remoción de la vegetación se llevará a cabo en la superficie de 1,281.39 m², siendo ésta una superficie relativamente pequeña, contribuyendo de esta forma a la conservación y mantenimiento de las características bióticas y abióticas naturales que persisten en todo el sistema ambiental delimitado y en la cuenca con variaciones apenas visibles, así mismo, se deben tomar en cuenta las medidas de prevención y mitigación que se plantean para el proyecto.

En conclusión, podemos determinar que las tierras donde se realizará el proyecto no están catalogadas como zonas frágiles, aun cuando se pretende eliminar la vegetación, pues no existe degradación hídrica o eólica y no presenta pendientes, ni condiciones climáticas extremas y sus suelos son altamente permeables, pues se ubican en una zona con posibilidades altas de funcionar como acuífero, tal como puede observarse en el plano basado en la carta de hidrología subterránea del INEGI (escala 1:250000). Por lo tanto, se puede establecer que de manera general en el área del proyecto se presenta una baja fragilidad natural, que pudiera propiciar un cambio en el estado actual de los suelos. El principal riesgo de cambio sería que la modificación de la cubierta vegetal (cambio de uso de suelo) se realizara sin una planeación adecuada y sin la aplicación de medidas de mitigación y/o de conservación del suelo y del agua, situación que no aplica para el proyecto que nos atañe.

Por lo anterior, con base en los razonamientos y consideraciones arriba expresados, se considera que se encuentra acreditada la segunda de las hipótesis normativas establecidas por el artículo 117, párrafo primero de la Ley General de Desarrollo Forestal Sustentable, en cuanto a que, con éstos ha quedado técnicamente demostrado que, con el desarrollo del proyecto de cambio de uso de suelo en cuestión, no se provocará la erosión de los suelos.

Por lo que corresponde a la tercera de las hipótesis arriba referidas, consistente en la obligación de demostrar que no se provocará el deterioro de la calidad del agua o la disminución en su captación, se observó lo siguiente:

Del Documento Técnico Unificado modalidad A (DTU-A) de cambio de uso de suelo en terrenos forestales, se desprende información contenida en diversos apartados del mismo, consistente en que:

Oficio N° SGPA/DGGFS/712/0789/17

En relación a la disminución en la captación del agua, se considera que por el desarrollo del proyecto este servicio no se verá afectado negativamente. Por lo que mediante el adecuado seguimiento de estas acciones se podrá garantizar la continuidad de los procesos de infiltración del agua de lluvia al subsuelo.

La capacidad de infiltración es la cantidad de lluvia que puede absorber en unidad de tiempo, por lo que ésta dependerá de la intensidad de la lluvia, tipo de suelo, uso del suelo, cubierta vegetal y humedad inicial. Parte del agua suele quedar retenida en el follaje de vegetación, una más se ubica en la capa no saturada de suelo y está disponible para ser absorbida por las plantas en la franja de penetración de las raíces o para ser evaporada por la acción de la energía solar sobre la superficie del terreno. Otra fracción del agua que se infiltra puede alcanzar la zona saturada del sistema acuífero, una vez superada la capacidad de campo del suelo (Ortiz-Ortiz, 1990; Mishra, 2003).

La captura de agua es el servicio ambiental que producen las áreas arboladas al impedir el rápido escurrimiento del agua de lluvia precipitada, proporcionando la infiltración de agua que alimenta los mantos acuíferos y la prolongación del ciclo del agua. El agua infiltrada o percolada corresponde a la cantidad de agua que en realidad está capturando el bosque o selva y que representa la oferta de agua producida por éste. El potencial de infiltración de agua de un área arbolada, depende de un gran número de factores como: La cantidad y distribución de la precipitación, el tipo de suelo, las características del mantillo, el tipo de vegetación y geomorfología del área, entre otros. Esto indica que la estimación de captura de agua debe realizarse por áreas específicas y con información muy fina (Torres y Guevara, 2002).

Dado que para el desarrollo del proyecto se solicita el cambio de uso de suelo en 3 sitios para la instalación de antenas repetidoras en donde se realizarán labores de desmonte, lo que significa que la infiltración al acuífero se puede ver alterada de manera diferencial durante la etapa de preparación del sitio. Sin embargo, la infiltración al acuífero que se dejará de percibir, representa porcentajes muy bajos (cifras que resultan prácticamente imperceptibles) en relación con los volúmenes captados en toda la Península de Yucatán, la Región Hidrológica Yucatán Este (Quintana Roo) RH33, donde se encuentran la antena repetidora N° 1 y la Región Hidrológica Yucatán Oeste (Campeche) RH31 donde se encuentra las antenas repetidoras N° 2 y 3.

Es por esto, que a continuación se presenta la estimación del cálculo de infiltración, así como la metodología empleada de las superficies donde se pretende el cambio de uso de suelo para cada una de las superficies donde se implementarán dichas obras y presumiblemente se perderá la infiltración del agua de lluvia por la remoción de la vegetación, pero de manera mínima.

Oficio N° SGPA/DGGFS/712/0789/17

Cantidad de Agua.

El coeficiente de escurrimiento se estimó a través de la aplicación del método propuesto en la NOM-011-CNA-2000 que establece las especificaciones y el método para determinar la disponibilidad media anual de aguas nacionales.

Este método parte de valores de k, que son los valores que dependen del tipo de suelo y su uso actual. Para este caso, los suelos pueden clasificarse como tipo "A" que pertenece a los "suelos permeables" para la antena repetidora N° 1 (Leptosol) y la antena repetidora N° 2 (Regosol) y con un uso de suelo clasificado como "Bosque, cubierto en más del 75%". Asimismo, para la antena repetidora N° 3 (Phaeozem), el suelo pertenece al tipo "B" que son semipermeables con arenas de mediana profundidad.

	7	po de suelo	A Birth Asia	
Cobertura del bosque	i sajusti 🗥	Α	B	С
Más del 75%		0.07	0.16	0.24
Entre 50 - 75%		0.12	0.22	∠ 0.26
Entre 25 – 50%	. SAFTING.	-0.17	0.26	0.28
Menos del 25%		0.22	0.28	0.30
Zonas Urbanas		- \ 5 \ O.26	0.29	0.33.

Suelo A. Suelos permeables, tales como arenas profundas y loess poco compactos

Suelo B. Suelos semipermeables, tales como arena de mediana profundidad.

Suelo C. Suelos casi impermeables, tales como arenas o loess muy delgados sobre una capa impermeable.

A cada uno de ellos le corresponde un valor k, cuyo valor se obtiene aplicando las ecuaciones siguientes:

Se aplica esta ecuación para valores de k menores que 0.15.

Donde:

Ce = Coeficiente de escurrimiento.

k = Constante de tipo y uso de suelo.

P = Precipitación anual en mm.

Se aplica esta ecuación para valores de k mayores que 0.15.

Ce =
$$K * (P-250) + (K-0.15)$$

Oficio N° SGPA/DGGFS/712/0789/17

Donde:

Ce = Coeficiente de escurrimiento.

k = Constante de tipo y uso de suelo.

P = Precipitación anual en mm.

Además de que se debe mencionar que también sólo es válida para valores de precipitación anual entre 350 y 2,150 mm anuales.

Para el caso particular del proyecto "Sistemas de Radio Repetidor para las Líneas de Transmisión Escárcega Potencia - Xpujil y Xpujil - Xul Ha", se tienen los siguientes datos:

Para la antena repetidora Nº 1.

P = Precipitación en el sitio con un valor de 1,902.3 mm anuales.

K = Para este caso, se obtuvo un valor que sería el siguiente, para cada uno de los ambientes, lo cual puede apreciarse en el cuadro que se presenta a continuación:

Bosque cubierto más del 75% = 0.07; Zona Urbana = 0.26.

El coeficiente de escurrimiento se habrá de calcular a partir de estos datos, por lo que ha resultado la siguiente estimación:

1) Bosque cubierto más del 75%.

Ce=
$$0.07 * \frac{(1,902.3 - 250)}{2000} = 0.07 * 0.826 = 0.057$$

2) Zonas urbanas%.

Ce=
$$0.26 * \frac{(1902.3 - 250)}{2000} + \frac{(0.26 - 0.15)}{1.5} = 0.26 * 0.826 + 0.073 = 0.23$$

Oficio N° SGPA/DGGFS/712/0789/17

El volumen medio anual de escurrimiento natural se estima a partir de la siguiente fórmula:

El volumen natural de escurrimiento se calculó a partir de estos valores, por lo que se tiene como resultado lo siguiente:

Bosque cubierto más del 75%
 VolESC = 1.9023 *0.002329* 0.057 = 0.0002525 Mm³
 Por lo tanto, el volumen medio anual natural =0.2525 m³

2) Zonas urbanas

VolESC = 1.9023* 0.002329 * 0.23 = 0.001019 Mm³ Por lo tanto, el volumen medio anual natural = 1,019 m³

En relación a la infiltración, la norma NOM-011-CNA-2000, no hace mención sobre su cálculo, pero puede estimarse considerando lo que menciona Aparicio (2006):

$$I = P - VolESC$$

Donde:

l: Volumen estimado de infiltración en el área de interés (m³)

P: Precipitación media anual en el área de interés (m³),

Donde: P = Precipitación anual (m) * Superficie del área de interés (km²)

E: Volumen estimado de escurrimiento en el área de interés (m³)

Con lo que el escurrimiento y la infiltración se obtienen de la siguiente forma:

1) Bosque cubierto más del 75%.

Infiltración = $1.9023 \text{ m} * 2,329.94 \text{ m}^2 - 0.0002525 = 4,432,244 \text{ m}^3$

2) Zonas urbanas.

Infiltración = 1.9023 * 2,329 94 - 0.001019 = 4,432.243 m³

X

Oficio N° SGPA/DGGFS/712/0789/17

De acuerdo con los resultados obtenidos para el radio repetidor N° 1, la afectación en infiltración en el sitio por la implementación del proyecto será casi nula, pasando de 4,432.244 m^{3} a 4,432.243 m^{3} .

Para la Antena repetidora Nº 2.

P = Precipitación en el sitio con un valor de 1,500 mm anuales.

K = Para este caso, se obtuvo un valor que sería el siguiente, para cada uno de los ambientes, lo cual puede apreciarse en el cuadro que se presenta a continuación:

Bosque cubierto más del 75% = 0.07; Zona Urbana = 0.26

El coeficiente de escurrimiento se habrá de calcular a partir de estos datos, por lo que ha resultado la siguiente estimación:

3) Bosque cubierto más del 75%

Ce=
$$0.07 * \frac{(1,500-250)}{2000} = 0.07 * 0.625 = 0.043$$

4) Zonas urbanas%

Ce=
$$0.26 * \frac{(1500 - 250)}{2000} + \frac{(0.26 - 0.15)}{1.5} = 0.26 * 0.625 + 0.073 = 0.23$$

El volumen medio anual de escurrimiento natural se estima a partir de la siguiente fórmula:

El volumen natural de escurrimiento se calculó a partir de estos valores, por lo que se tiene como resultado lo siguiente:

3) Bosque cubierto más del 75% VolESC = 1.5 * 0.002165 * 0.043 = 0.0001396 Mm³

Por lo tanto, el volumen medio anual natural =0.139 m³

Av. Progreso N° 3, Edificio 3, Planta Alta, Col. del Carmen, Delegación Coyoacán, Ciudad de México, C.P. 04100 Tels: (55) 54 84 35 05, 67 y 68 <u>www.gob.mx/semarnat</u>

Oficio N° SGPA/DGGFS/712/0789/17

4) Zonas urbanas

VolESC = 1.5 * 0.002165 * 0.23 = 0.0007465 Mm³ Por lo tanto, el volumen medio anual natural = 746 m³

En relación a la infiltración, la norma NOM-011-CNA-2000, no hace mención sobre su cálculo, pero puede estimarse considerando lo que menciona Aparicio (2006):

I = P - VoIESC

Donde:

l: Volumen estimado de infiltración en el área de interés (m³)

P: Precipitación media anual en el área de interés (m³),

Donde: P = Precipitación anual (m) * Superficie del área de interés (km²)

E: Volumen estimado de escurrimiento en el área de interés (m³)

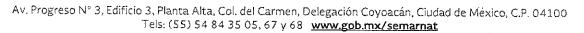
Con lo que el escurrimiento y la infiltración se obtienen de la siguiente forma:

3) Bosque cubierto más del 75%.

Infiltración = 1.5 m * 2,165.32 m² - 0.0001396 = 3,247.97 m³

4) Zonas urbanas.

Infiltración = $1.5 * 2,165.32 - 0.0007465 = 3,247.97 \text{ m}^3$


De acuerdo con los resultados obtenidos para el radio repetidor N° 2, la afectación en infiltración en el sitio por la implementación del proyecto sería nula.

Para la Antena repetidora N° 3.

P = Precipitación en el sitio con un valor de 1,500 mm anuales.

K = Para este caso, se obtuvo un valor que sería el siguiente para cada uno de los ambientes, lo cual puede apreciarse en el cuadro que se presenta a continuación:

Bosque cubierto más del 75% = 0.16; Zona Urbana = 0.26

Oficio N° SGPA/DGGFS/712/0789/17

El coeficiente de escurrimiento se habrá de calcular a partir de estos datos, por lo que ha resultado la siguiente estimación:

5) Bosque cubierto más del 75%

Ce=
$$0.16 * \frac{(1,500 - 250)}{2000} = 0.16 * 0.625 = 0.1$$

6) Zonas urbanas%

Ce=
$$0.26 * \frac{(1500 - 250)}{2000} + \frac{(0.26 - 0.15)}{1.5} = 0.26 * 0.826 + 0.073 = 0.23$$

El volumen medio anual de escurrimiento natural se estima a partir de la siquiente fórmula:

El volumen natural de escurrimiento se calculó a partir de estos valores, por lo que se tiene como resultado lo siguiente:

5) Bosque cubierto más del 75%

VolESC = 1.5 * 0.000681 * 0.1 = 0.0001021 Mm³
Por lo tanto, el volumen medio anual natural = 102.1 m³

6) Zonas urbanas

VolESC = 1.5 * 0.000681 * 0.23 = 0.0002349 Mm³ Por lo tanto, el volumen medio anual natural = 234.9 m³

En relación a la infiltración, la norma NOM-011-CNA-2000, no hace mención sobre su cálculo, pero puede estimarse considerando lo que menciona Aparicio (2006):

$$I = P - VolESC$$

Donde:

l: Volumen estimado de infiltración en el área de interés (m³)

Oficio N° SGPA/DGGFS/712/0789/17

P: Precipitación media anual en el área de interés (m³)
Donde: P = Precipitación anual (m) * Superficie del área de interés (km²)
E: Volumen estimado de escurrimiento en el área de interés (m³)

Con lo que el escurrimiento y la infiltración se obtienen de la siguiente forma:

5) Bosque cubierto más del 75%.

Infiltración = $1.5 \text{ m} * 681 \text{ m}^2 - 0.0001021 = 1021.49 m^3$

6) Zonas urbanas.

Infiltración = $1.5 \text{ m}^* 681 \text{ m}^2 - 0.0002349 = 1021.49 m}^3$

De acuerdo con los resultados obtenidos para el radio repetidor Nº 3, la afectación en infiltración en el sitio por la implementación del proyecto sería nula.

Calidad del agua

De acuerdo con la evaluación de los impactos ambientales, se concluye que los impactos que incidirán sobre la captación del agua en calidad y cantidad, son los siguientes:

- Reducción de la cobertura vegetal.
- Contaminación del medio.
- Reducción de la superficie permeable del suelo.
- Sellado del suelo.

Por lo tanto, el proyecto propone las siguientes medidas preventivas para evitar la afectación a la captación de agua en calidad, y en su caso, medidas de mitigación para minimizar la reducción en la captación del agua en cantidad.

Áreas permeables

Tipo de medida: Mitigación.

Objetivo de la medida: Se garantiza que la superficie que se requiera para el camino de acceso, permanecerá como área permeable, a fin de favorecer la captación de agua al subsuelo. Con esta medida se reduce la afectación a la captación de agua en cantidad derivado de la reducción de la cobertura vegetal del predio y del sellado del suelo, principalmente para la cimentación de la antena y la caseta de monitoreo.

Etapa de aplicación: Durante todo el tiempo que dure la preparación de sitio.

Descripción de la medida: Esta medida consiste en garantizar la conservación de la superficie que se requiera para el camino de acceso, como área permeable de la superficie total del CUSTF.

Acción de la medida: La superficie destinada como área permeable, permitirá la captación de aqua hacia el

Oficio N° SGPA/DGGFS/712/0789/17

subsuelo alimentando los mantos acuíferos, lo que beneficia la captación de agua en calidad, máxime si consideramos que la zona en la que se ubica el predio se clasifica como material consolidado con posibilidades altas de funcionar como acuífero.

Eficacia de la medida: Las áreas permeables que propone el proyecto, serán respetadas como tales, incluso durante la operación del proyecto, por lo que se garantiza la captación de agua en cantidad dentro del predio y a nivel del sistema ambiental.

Instalación de sanitarios móviles

Tipo de medida: Preventiva.

Objetivo de la medida: Evitar el impacto originado por la contaminación del medio, para no comprometer la calidad del aqua captada en el sistema.

Etapa de aplicación: Durante todo el tiempo que dure la preparación de sitio.

Descripción de la medida: Previo a cualquier actividad implicada en el cambio de uso de suelo, se instalarán sanitarios portátiles (tipo Sanirent) a razón de 1 por cada 10 trabajadores.

Acción de la medida: Evitará la micción y defecación al aire libre, así como la descarga directa de aguas residuales al medio. Con la medida se evitará que dichos, residuos penetren al subsuelo y alcancen el acuífero; por lo que se evitará el deterioro de la calidad del agua pluvial que será captada.

Eficacia de la medida: El uso de sanitarios móviles dentro de la superficie sujeta a CUSTF, es una práctica común en el desarrollo de cualquier proyecto, y el uso adecuado de los mismos permite alcanzar el 100% de efectividad de la medida; sin embargo, ello depende del grado de disciplina y conciencia ambiental del personal de la obra, por lo que será reforzada con capacitación a través de pláticas ambientales y reglamentos que indiquen la restricción y sanciones de quienes incumplan con la medida aquí citada.

Instalación de contenedores para residuos

Tipo de medida: Preventiva.

Objetivo de la medida: Evitar el impacto originado por la contaminación del medio, para no comprometer la calidad del agua captada en el sistema.

Etapa de aplicación: Durante todo el tiempo que dure la preparación de sitio.

Descripción de la medida: Se instalarán contenedores debidamente rotulados para el acopio de basura para cada tipo de residuo que se genere (residuos orgánicos, inorgánicos, etc.), los cuales estarán ubicados estratégicamente con la finalidad de que los trabajadores, así como el personal involucrado en el cambio de uso de suelo, puedan usar dichos contenedores, promoviendo así la separación de la basura de acuerdo con su naturaleza, con la posibilidad de recuperar subproductos reciclables.

Acción de la medida: Los contenedores servirán de reservorios temporales para la basura (residuos sólidos) que se genere durante las distintas etapas del proyecto, y dado el grado de hermeticidad que tendrán, impedirán que dichos residuos sean dispersados por el viento y otros factores, evitando también que sean arrojados directamente al medio, impidiendo que se conviertan en residuos potencialmente contaminantes para el acuífero subterráneo.

Eficacia de la medida: El grado de eficacia de la medida depende de la cultura ambiental que tengan los trabajadores que serán contratados; ya que será necesario que los obreros hagan un uso adecuado de los contenedores, para que estos puedan cumplir su función como reservorios temporales de residuos; por lo que esta medida requiere de otras adicionales como la capacitación constante en materia de manejo de residuos, así como el establecimiento de un reglamento de obra que incluya puntos específicos sobre el manejo de residuos generados, sin dejar de fuera las sanciones a que se harán acreedores los que lo incumplan; lo anterior a efecto de poder alcanzar el 100% de éxito en su aplicación.

Por lo anterior, con base en las consideraciones arriba expresadas, se estima que se encuentra acreditada la tercera de las hipótesis normativas que establece el artículo 117, párrafo primero, de la Ley General de Desarrollo Forestal Sustentable, en cuanto que con éstos ha quedado técnicamente demostrado que, con el desarrollo del proyecto de cambio

Oficio N° SGPA/DGGFS/712/0789/17

de uso de suelo en cuestión, <u>no se provocará el deterioro de la calidad del agua o la disminución en su captación</u>.

4. Por lo que corresponde al cuarto de los supuestos arriba referidos, consistente en la obligación de demostrar que los usos alternativos del suelo que se propongan sean más productivos a largo plazo, se observó lo siguiente:

En el Documento Técnico Unificado modalidad A (DTU-A) de cambio de uso de suelo en terrenos forestales, se desprende información contenida en diversos apartados del mismo, consistente en que:

Con el objeto de mostrar que el uso de suelo propuesto resulta más productivo a largo plazo que el que actualmente ostenta, se presenta una comparación del beneficio económico que generaría el proyecto con el costo estimado de los recursos biológicos forestales que alberga actualmente el área pretendida para cambio de uso del suelo.

Para tal fin, se calcularon los costos de los recursos bióticos existentes en el área del proyecto considerando los criterios siguientes: a) Beneficios económicos derivados de un posible aprovechamiento maderable que permitiese la extracción del volumen estimado, b) estimación del valor económico del aprovechamiento de recursos forestales no maderables (plantas medicinales, plantas de ornato, aprovechamiento de fauna silvestre) y c) el valor económico de los servicios ambientales que son valor de uso directo o valor de provisión, que considera la extracción o uso directo de los recursos naturales, el valor de uso indirecto, que involucra los servicios de soporte, regulación y uso cultural de los recursos bióticos; valores de opción y de existencia, los cuales tienen que ver con el potencial de uso de las materias primas y el uso de existencia, el cual considera el potencial estético, recreativo o cultural de los recursos a largo plazo.

Estimación del Valor de los recursos forestales en el área solicitada para cambio de uso del suelo de los tres sitios de los sistemas de radio repetidor

Recursos Forestales	Valor en Pesos M.N. (\$)
Maderables	\$114,451.06
No maderables	\$178.86
Total	\$114,629.92

Oficio N° SGPA/DGGFS/712/0789/17

En general, sumando la valoración de los volúmenes maderables, las plantas medicinales, la fauna silvestre y los valores de los bienes y servicios antes citados, se tendría que los recursos forestales en la superficie forestal de 6,576.65m² solicitadas para cambio de uso de suelo se estima en \$ 114,629.92 (Ciento catorce mil seiscientos veintinueve pesos 92/100 M.N.) Es importante mencionar que esta valoración está realizada para un año de aprovechamiento o uso, sin embargo, en el caso de la valoración de los servicios ambientales (bajo un uso sustentable y de conservación), brinda la posibilidad de obtener beneficios económicos a mediano y largo plazo, por lo que se consideran dos escenarios 1) mediano plazo (5 años) y 2) largo plazo (20 años). De esta manera los beneficios por este concepto serían de hasta \$78,415,168.87 (Setenta y ocho millones cuatrocientos quince mil ciento sesenta y ocho pesos con 87/100 M.N.)

Valoración de los bienes y servicios ambientales en el mediano y largo plazos.

Recursos Forestales	Valor	Mediano plazo	Largo Plazo
	∕añe	5 años	20 años
Bienes y servicios ambientales	\$3,920,758.44	\$19,603,792.22	\$78,415,168.87

En tanto que la construcción del proyecto comenzaría a generar beneficios a corto plazo, primero porque las actividades constructivas requieran una inversión en contratación de personal y diversos insumos, ya que se requiere personal en el sitio del proyecto y todas las actividades emplearán el uso de maquinaria, demandarán el uso de combustibles, aditivos y mantenimiento, por lo que se realizarón estimaciones sobre el aporte económico de estos aspectos que dependen de la cantidad de personal empleado. Si consideramos que se requiere al menos una cuadrilla de 50 personas para la preparación del sitio y construcción por un período de 12 meses, con un costo diario mínimo de \$450.00 pesos por persona para satisfacer las necesidades de alimentación, hospedaje y otros servicios, se tendría un beneficio económico de \$2,025,000.00 pesos, en el tiempo de preparación del sitio y construcción. También hay que considerar la contratación de personal especializado como son: Ingenieros civiles, Ingenieros en electricidad, Topógrafos, Mecánicos, entre otros, que se estima en total de 25, con un costo aproximado entre salarios y gastos de estancia de \$20,000,000 pesos.

En cuanto a la compra de combustibles y aditivos para el uso de maquinaria, se espera un gasto promedio mensual de \$107,194.50 pesos por los 12 meses de construcción de la obra, la derrama económica en la zona sería de \$321,583.00 pesos; esto sin considerar los costos directos de los materiales y equipo que conlleva la instalación del sistema de radio

Oficio N° SGPA/DGGFS/712/0789/17

repetición, cableado, torres, entre otros, ni el uso de materiales provisionales como la madera.

Valoración de la derrama económica por concepto de combustibles y aditivos, para la construcción del proyecto.

Recurso empleado	Etapa	Volumen, peso o cantidad	Costo unitario*	Costo total
Aceite	Construcción obra civil	152 l	\$120.00	\$18,200.0
Gasolina	Construcción obra civil, electromecánica y puesta en servicio	3,2901	\$13.22	\$43,493.8
Diésel	Todo el proceso de construcción	3,2901	\$ 13.83	\$45,500.7
		Total esti	mado por mes	\$107,194.5

En el mismo sentido, para la realización de la obra se calcula una inversión total de \$326,740,088.97 (Trescientos veintiséis millones setecientos cuarenta mil, ochenta y ocho pesos con 97/100 M.N.), derivados de la construcción de los sitios de radio repetición, que incluye los aspectos indemnizatorios y la generación de empleos directos e indirectos.

Montos estimados para la construcción del provecto.

Concepto	Pesos	Dólares
Construcción	275,572,642.80	21,026,192.64
Indemnizaciones	34,188,062.50	2,608,549.17
Medidas mitigación y compensación	16,979,383.67	1,295,527.97
TOTAL	326,740,088.97	24,930,268.78

Considerando solamente los costos de indemnizaciones, contratación de personal e insumos como combustibles y aceite, contratación de mano de obra y personal especializado, así como la inversión para la aplicación de medidas de mitigación y compensación, se tiene un estimado de \$73,514,029.67 (Setenta y tres millones quinientos catorce mil veintinueve pesos 67/100 M.N.), que sumados a la operación del proyecto arroja una cantidad de \$400,554,118.64 (Cuatrocientos millones quinientos cincuenta y cuatro mil ciento dieciocho pesos 64/100 M.N.).

Oficio N° SGPA/DGGFS/712/0789/17

Beneficios en el corto, mediano y largo plazo derivados de la implementación del proyecto vs. el mantenimiento y uso de los recursos forestales.

Concepto	Beneficios direc	irectos proyecto Beneficios de		los recursos forestales	
	Corto plazo (2 años)	Largo plazo	Corto	Mediano	Largo
Indemnizaciones	34,188,062.5				
Contratación de personal (mano de obra en general)	2,025,000.00				
Personal especializado	20,000,000.0		- T44.V		
Combustibles y aditivos	321,583.5	***************************************			
Aplicación de medidas de mitigación	16,979,383.67				
Recursos forestales			23,501,887.1	:	
Bienes y servicios ambientales			3,920,758.4	19,603,792.2	78,415,168.9
Operación del proyecto		\$326,740,088.97			
Total	73,514,029.67	\$326,740,088.97	27,422,645.5	19,603,792.2	78,415,168.9

Como se puede apreciar, los beneficios derivados de la construcción del proyecto de los sitios de radio repetición, son mayores en el corto y largo plazo que los beneficios que se tendría por el mantenimiento y uso de los bienes y servicios ambientales, por lo que se cumple con el precepto de que los beneficios económicos derivados de la realización de la obra son mayores

No se omite mencionar que a largo plazo el proyecto contribuya al correcto funcionamiento y adecuado funcionamiento de la infraestructura eléctrica existente; con esto se espera que la optimización del servicio eléctrico para la región, derivada del correcto funcionamiento de la línea de transmisión, permita el incremento de actividades productivas, o bien, de eficientizar las que actualmente se desarrollan incluyendo las agrícolas, por lo que el principal beneficio de este tipo de proyecto es de índole social, con miras o mejoras en los servicios que permitan una mejor calidad de vida de la población usuaria de electricidad. Además, tratándose de una zona de interés turístico basado en el paisaje y zonas arqueológicas, será factible mejorar estos servicios incrementando la derrama económica de este giro e indirectamente sobre los pequeños comercios (ejemplo

Oficio N° SGPA/DGGFS/712/0789/17

abarrotes y artesanías) que ocurren en la zona. Por tanto, se concluye que, con base en las estimaciones económicas presentadas, el uso de suelo propuesto será más redituable que el uso actual.

Por lo anterior, con base en las consideraciones arriba expresadas, esta autoridad administrativa estima que se encuentra acreditada la cuarta hipótesis normativa establecida por el artículo 117, párrafo primero, de la Ley General de Desarrollo Forestal Sustentable, en cuanto que con éstas ha quedado técnicamente demostrado que el uso alternativo del suelo que se propone es más productivo a largo plazo.

VIII. Que en cumplimiento de la obligación que a esta autoridad administrativa le impone lo dispuesto por el artículo 117, párrafos segundo y tercero, de la Ley General de Desarrollo Forestal Sustentable, esta autoridad administrativa se abocó al estudio de la información y documentación que obra en el expediente, observándose lo siguiente:

El artículo 117, párrafos, segundo y tercero, establecen:

En las autorizaciones de cambió de uso del suelo en terrenos forestales, la autoridad deberá dar respuesta debidamente fundada y motivada a las propuestas y observaciones planteadas por los miembros del Consejo Estatal Forestal.

No se podrá otorgar autorización de cambio de uso de suelo en un terreno incendiado sin que hayan pasado 20 años y que se acredite fehacientemente a la Secretaría que el ecosistema se ha regenerado totalmente, mediante los mecanismos que para tal efecto se establezcan en el reglamento correspondiente.

Por lo que corresponde a la opinión del Consejo Estatal Forestal en el estado de Quintana Roo, se tuvo lo siguiente.

 Mediante Acta de la Vigésima Tercera Sesión del Comité Técnico para el Cambio de Uso de Suelo en Terrenos Forestales, se emitió <u>opinión favorable</u> para el proyecto "Construcción de los Sistemas de Radio Repetidor para las Líneas de Transmisión Escárcega Potencia — Xpujil y Xpujil — Xul Ha".

De esta manera y dado que el Consejo Estatal Forestal de Quintana Roo no emitió ninguna propuesta ni observación al proyecto de referencia, por lo que se concluye que se da cumplimiento al segundo párrafo del artículo 117 de la Ley General de Desarrollo Forestal Sustentable, por lo tanto, no aplica dar respuesta debidamente fundada y motivada.

Con relación a la opinión Consejo Estatal Forestal en el estado de Campeche, se tuvo lo siguiente:

Oficio N° SGPA/DGGFS/712/0789/17

Mediante Minuta de Fecha 12 de septiembre de 2016, el Comité emitió <u>opinión</u> favorable, condicionada a que solvente las observaciones generadas durante el análisis del Documento Técnico Unificado de la propuesta del Trámite de Cambio de Uso de Suelo Forestal Modalidad A del proyecto denominado "Construcción de los Sistemas de Radio Repetidor para las Líneas de Transmisión Escárcega Potencia – Xpujil y Xpujil – Xul Ha", ubicado en el municipio de Calakmul.

Las observaciones fueron:

- Falta la memoria de cálculo de los volúmenes de las especies a remover ya que se considera que los volúmenes propuestos son muy elevados por el Cambio de Uso de Suelo.
- 2. La sumatoria total del número de individuos por hectárea para algunas especies forestales registradas en los dos tipos de vegetación (Selva mediana Subperennifolia y Selva Baja Subcaducifolia) existentes en el área donde se realizará el CUSTF son incorrectos (Ver la tabla 6:3 del capítulo 6).
- 3. El promovente deberá vincular la actividad del proyecto con los criterios establecidos en el Programa de Ordenamiento Ecológico del Territorio del Municipio de Calakmul, Campeche, decretado el 01 de diciembre de 2015, en el Periódico Oficial del Estado, ya que se realiza la vinculación con el anterior POET de Calakmul.
- 4. En relación al Capítulo XIV; Vinculación con los ordenamientos jurídicos aplicables en materia ambiental y, en su caso, con la regulación del uso del suelo, el promovente vincula con las Normas Oficiales Mexicanas en materia ambiental de manera general, por lo que deberá vincular las NOM'S aplicables desde la preparación, construcción y operación del proyecto.
- 5. Con respecto a Los Conjuntos de Datos Vectoriales con información de Uso de Suelo y Vegetación, Escala 1:250 000 del INEGI usados por la SEMARNAT se tiene lo siguiente:

Los polígonos del proyecto se encuentran inmersos en terreno forestal, en específico los siguientes Selva baja subcaducifolia y Selva mediana subperennifolia.

Uno de los sitios en los que se realizará el proyecto incide dentro de la Zona Estatal Sujeta a Conservación Ecológica denominada Balam-kú, ubicado en los municipios de Calakmul y Escárcega, mismo que a la fecha ya cuenta con un Programa de Conservación y Manejo de la zona Sujeta a Conservación Ecológica,

Oficio N° SGPA/DGGFS/712/0789/17

publicado el día 4 de enero de 2011, en el Periódico Oficial del Estado de Campeche, en específico se encuentra inmerso el sitio repetidor 3, con su camino de acceso en la Zona de Amortiguamiento I (Norte).

En este sentido, mediante oficio N° SGPA/DGGFS/712/3183/16 de fecha 23 de noviembre del 2016, la Dirección General de Gestión Forestal y de Suelos, hace del conocimiento al Ing. Marco Antonio Loya Izaguirre, en su carácter de Residente Regional Peninsular de la Comisión Federal de Electricidad, las observaciones generadas por el Comité de Normatividad y Regulación Forestal del Consejo Estatal Forestal en el estado de Campeche, el cual mediante oficio N° N22FO- 0839/16 de fecha 30 de noviembre del 2016, entregó la información referente a dichas observaciones, realizando las adecuaciones correspondientes al Documento Técnico Unificado modalidad A, desahogando cada una de las observaciones realizadas por el Comité, por lo que se da cumplimiento al segundo párrafo del artículo 117 de la Ley General de Desarrollo Forestal Sustentable.

Por lo que corresponde a la prohibición de otorgar autorización de cambio de uso de suelo en un terreno incendiado sin que hayan pasado 20 años, se advierte que en el informe de la visita técnica de campo de fecha 19 de septiembre del 2016, remitido por la Delegación Federal de la SEMARNAT en el estado de Quintana Roo, se indica que durante el recorrido dentro de las áreas cubiertas de vegetación correspondientes a las superficies propuestas, no se observaron vestigios de incendios forestales que hayan ocurrido recientemente y/o en años anteriores y de la visita técnica de campo de fecha 29 de septiembre del 2016, remitida por la Delegación Federal de la SEMARNAT en el estado de Campeche, se indica que en base a la visita técnica no se detectó algún daño por incendio, por lo que no es aplicable este precepto legal al proyecto de referencia.

IX. Que en cumplimiento de la obligación que a esta autoridad le impone lo dispuesto por el artículo 117, párrafo cuarto, de la LGDFS, esta autoridad administrativa se abocó al estudio de la información y documentación que obra en el expediente, observándose lo siguiente:

El artículo 117, párrafo cuarto, establece:

Las autorizaciones que se emitan deberán integrar un programa de rescate y reubicación de especies de la vegetación forestal afectadas y su adaptación al nuevo hábitat. Dichas autorizaciones deberán atender lo que, en su caso, dispongan los programas de ordenamiento ecológico correspondiente, las normas oficiales mexicanas y demás disposiciones legales y reglamentarias aplicables.

Por lo que corresponde al programa de rescate y reubicación de especies de la vegetación forestal afectada y su adaptación al nuevo hábitat, anexo a la presente

Oficio N° SGPA/DGGFS/712/0789/17

resolución se encuentra un programa de rescate y reubicación de las especies de vegetación forestal, tanto de aquellas que se encuentran en alguna categoría de riesgo en la NOM-059-SEMARANT-2010, así como las de importancia biológica y ecológica, con el objeto de que por la remoción de la vegetación no afecte la estructura y composición de especies en los ecosistemas que se prenden afectar y garantizar que no se ponen en riesgo ninguna especie de flora, así como favorecer el hábitat para las especies de fauna que ahí se desarrollan.

Programa de Ordenamiento Ecológico Territorial.

Ordenamiento Ecológico Territorial del Municipio de Calakmul, Campeche.

El Programa de Ordenamiento Ecológico del Territorio (POET) del Municipio de Calakmul, está fundado en catorce (14) Unidades de Gestión Territorial (UGT) donde se señalan las actividades predominantes, compatibles, condicionadas, restringidas, sin potencial, así como las políticas de usos, lineamientos y criterios de regularización ecológica aplicables a cada una de las unidades identificadas.

Políticas ambientales establecidas en el POET del Municipio de Calakmul, Campeche.

Politica .	Descripción
Protección	En esta política se incluyen todos los ambientes naturales cuya diversidad florística y/o faunística debe preservarse, es decir, las áreas que presentan especies endémicas o en peligro de extinción.
	Dentro de las áreas sujetas a protección sólo se pueden realizar actividades científicas o recreativas controladas, quedando prohibido cualquier otro tipo de uso.
Conservación	Esta política está dirigida a aquellos paisajes cuyos usos actuales o propuestos cumplen con una función ecológica relevante, pero que no merecen ser preservadas en el SINAP. Esta política, lo mismo que la anterior, se aplica con la finalidad de mantener las condiciones naturales del medio, pero se diferencia de ésta por permitir un uso diversificado de bajo impacto de los recursos existentes en las unidades de paisaje donde se aplica.
Restauración	A diferencia de las políticas anteriores, la de restauración puede aplicarse al mismo tiempo y en el mismo espacio que éstas, y se aplica a todas aquellas áreas donde se requiere regenerar o mejorar las condiciones ambientales. Por lo tanto, su aplicación se efectúa sobre áreas que presentan contaminación, erosión y deforestación, y la intensidad de las actividades de restauración están en función del grado de alteración de los paisajes.
Aprovechamiento	Dentro de ésta se incluyen todos aquellos paisajes que tienen recursos con potencial para explotarse de forma intensa y continua, así como las áreas con orientación para albergar asentamientos humanos. En la explotación que se realice de los recursos sólo debe cuidarse que la intensidad de las actividades permita la sustentabilidad de las mismas y preservar la dinámica geo-ecológica de los paisajes.

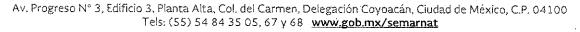
Para cada política el POET del Municipio de Calakmul establece los usos permitidos, los cuales se enlistan en la siguiente tabla.

Oficio N° SGPA/DGGFS/712/0789/17

w 1750

Usos establecidos para cada política del POET del Municipio de Calakmul, Campeche.

Politica	Usos
Protección	Labores de investigación.
Conservación	Unidades de manejo para la conservación de la vida silvestre (UMAs), Apicultura Orgánica Sustentable, Ecoturismo, Plantaciones forestales.
Restauración	Reforestación con fines de rehabilitación ambiental, Reforestación con fines Productivos, Sistemas Agroforestales, Sistemas silvopastoriles.
Aprovechamiento	Agricultura intensiva, Agricultura orgánica, Ganadería intensiva, Acuacultura, Industria, Actividad minera, Tratamiento de residuos sólidos.


Para cada una de las catorce Unidades de Gestión Territorial, el POET de Calakmul establece los usos principales, compatibles, condicionados y no compatibles, cuyas definiciones se presentan en la siguiente tabla.

Definición de los tipos de usos para cada UGT establecida en el POET del Municipio de Calakmul, Campeche.

No Compatible	Son los Usos del suelò y Agua que no son compatibles con el Uso Principal de cada Unidad de Gestión Territorial
Condicionado	Se refieren a aquellos que pueden aplicarse en la Unidad siempre y cuando se lleve a cabo un diseño específico de la implementación, son vistos también como Usos del suelo secundarios.
Compatible	Son usos complementarios a los anteriores, que tienen un carácter secundario, pero no significan competencia por el territorio o por recursos
Principal	Corresponden a los usos de suelo y agua principales para cada Unidad de Gestión Territorial, que pueden coexistir entre sí, sin existir competencia territorial.
Uso	Descripción

Cabe destacar que el POET del municipio de Calakmul no establece criterios específicos para infraestructura como la que se propone para el presente proyecto, únicamente hace referencia a lo siguiente:

La instalación de líneas de conducción de energía eléctrica, telefonía y telegrafía (postes, torres, estructuras, equipamiento y antenas) deberá contar con autorización en materia de impacto ambiental y en caso de requerir cambio de uso de suelo deberá sujetarse a lo que establece la Ley General del Equilibrio Ecológico y la Protección al Ambiente además de la Ley General para el Desarrollo Forestal Sustentable.

Oficio N° SGPA/DGGFS/712/0789/17

Al respecto el proyecto cumple con lo establecido en el POET del municipio de Calakmul, al presentar el Documento Técnico Unificado Modalidad A (DTU-A) para la obtención de la autorización de cambio de uso de suelo en terrenos forestales en materia forestal y de impacto ambiental.

En lo relativo del cumplimiento a las especificaciones establecidas en las diferentes normas oficiales mexicanas que por la naturaleza del proyecto aplican las siguientes:

Normas Oficiales Mexicanas.

Aire.

Las normas oficiales mexicanas en materia de aire que se vinculan al proyecto se enlistan en la siguiente tabla:

Normas Oficiales Mexicanas en materia de aire.

PROPERTY AND ADDRESS OF THE PROPERTY ADDRESS OF THE PROPERTY AND ADDRESS OF THE PROPERTY ADDRESS OF THE PROPERTY AND ADDRESS OF THE PROPERTY ADDRESS OF THE PR	1.50 d. es., 1.50 de es., 1.50
Norma Oficial Mexicana	Descripción
NOM-041-SEMARNAT-2006	Que establece los límites máximos permisibles de emisión de gases contaminantes provenientes del escape de los vehículos automotores en circulación que usan gasolina como combustible.
NOM-043-SEMARNAT-1993	Que establece los níveles máximos permisibles de emisión a la atmósfera de partículas sólidas provenientes de fuentes fijas.
NOM-045-SEMARNAT-2006	Que establece los límites máximos permisibles de opacidad, procedimiento de prueba y características técnicas del equipo de medición para vehículos en circulación que usan diésel como combustible.
NOM-085-SEMARNAT-1994	Que establece los niveles máximos permisibles de emisión a la atmósfera de humos, partículas suspendidas totales, bióxidos de azufre y óxidos de nitrógeno y los requisitos y condiciones para la operación de los equipos de calentamiento indirecto por combustión, así como los niveles máximos permisibles de emisión de bióxido de azufre en los equipos de calentamiento directo por combustión.
NOM-086-SEMARNAT-1994	Especificaciones sobre protección ambiental que deben reunir los combustibles fósiles líquidos y gaseosos que se usan en las fuentes fijas y móviles.
2500000 12 APN	SERVICE OF THE PROPERTY OF THE

Los vehículos que serán utilizados en las actividades de preparación del sitio, construcción y operación del proyecto recibirán mantenimiento periódico con la finalidad de mantenerlos en condiciones óptimas de operación, minimizando la afectación por emisiones atmosféricas, ruido y/o potenciales derrames. Para tal fin se recurrirá a talleres establecidos y se evitará que las unidades reciban mantenimiento dentro del área de proyecto.

Oficio N° SGPA/DGGFS/712/0789/17

Se contempla un plan de vigilancia ambiental para garantizar el cumplimiento y se tendrá un listado de los vehículos a utilizar y una bitácora en la que se realice el seguimiento de la periodicidad de los mantenimientos que reciban.

Ruido.

Se identificó como normativa aplicable al proyecto en el componente ruido, las siguientes Normas Oficiales Mexicanas:

Normas Oficiales Mexicanas en materia de ruido

Norma Oficial Mexicana	Descripción
NOM-080-SEMARNAT-1994	Que establece los límites máximos permisibles de emisión de ruido provenientes del escape de los vehículos automotores, motocicletas y triciclos motorizados en
	circulación y su metodo de medición.

Los vehículos automotores contratados, contarán en caso de requerirse, con sistemas silenciadores de ruido ubicados en el escape de gases, en caso de que no cumplan con lo estipulado en la NOM-080-SEMARNAT-1994. Se contempla un plan de vigilancia ambiental para garantizar su cumplimiento. Los mantenimientos regulares mencionados en el apartado anterior coadyuvarán a conservar los vehículos utilizados durante las diferentes etapas del proyecto en óptimas condiciones, minimizando la afectación acústica que pudieran generar.

Descarga de aguas residuales.

Las únicas aguas residuales que se generarían por el desarrollo del proyecto, serían aquellas relativas a la utilización de servicios sanitarios por parte del personal que labore en la obra.

Para el manejo y disposición final de tales residuos, se realizará la contratación de una empresa especializada autorizada por SEMARNAT para prestar el servicio de renta y mantenimiento de sanitarios portátiles, misma que se encargará a su vez de la disposición final de dichos residuos.

Manejo y transportación de residuos peligrosos generados en las etapas de construcción, operación y abandono.

Oficio N° SGPA/DGGFS/712/0789/17

El manejo, almacenamiento y disposición final de los residuos peligrosos que se generen como parte del desarrollo del proyecto, se realizará con base a lo establecido en las normas contenidas en la siguiente tabla, asimismo, se implementarán programas o planes de manejo de residuos sólidos que sean específicos para el proyecto.

Normas Oficiales Mexicanas para el Manejo de Residuos Peligrosos

Norma Oficial Mexicana	Descripción
NOM-052-SEMARNAT-2005	Que establece las características, el procedimiento de identificación y los listados de los residuos peligrosos.
NOM-053-SEMARNAT-1993	Que establece el procedimiento para llevar a cabo la prueba de extracción para determinar los constituyentes que hacen a un residuo peligroso por su toxicidad al ambiente.
NOM-054-SEMARNAT-1993	Que establece el procedimiento para determinar la incompatibilidad entre dos o más residuos considerados como peligrosos por la Norma Oficial Mexicana NOM-052- SEMARNAT-1993

Para la disposición final de los residuos peligrosos en caso de generarse se contratará el servicio de una empresa especializada que cuente con autorización de la SEMARNAT para el manejo, transporte y disposición de este tipo de residuos.

Flora y fauna.

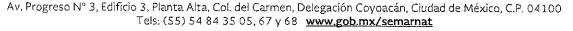
Durante los trabajos de campo se registraron siete especies vegetales en estatus de conservación según la NOM-059-SEMARNAT-2010 y para fauna se registraron y verificaron 32 especies.

Normas Oficiales Mexicanas para la protección de flora y fauna.

Norma Oficial Mexicana	Descripción
	Què determina las especies y subespecies de flora y fauna silvestres terrestres y
	acuáticas en peligro de extinción, amenazadas, raras y las sujetas a protección
	especial y que establece especificaciones para su protección.

Al respecto, cabe destacar que el proyecto contempla en caso de requerirse, un programa de rescate y reubicación para las especies de fauna que se encuentran en estatus de conservación y un programa de rescate y reubicación para las especies de flora que se encuentran en estatus de conservación y que pudieran ser afectados de manera directa

SEMARNAT SECRETARÍA DE MEDIO AMBIENTE Y RECURSOS NATURALES


SUBSECRETARÍA DE GESTIÓN PARA LA PROTECCIÓN AMBIENTAL DIRECCIÓN GENERAL DE GESTIÓN FORESTAL Y DE SUELOS

Oficio N° SGPA/DGGFS/712/0789/17

por las actividades propias del proyecto, por lo que no se pondrá en riesgo su conservación. Además, se contempla el monitoreo de estas medidas para verificar su efectividad.

En este sentido, de acuerdo a lo mencionado en capítulos anteriores de este documento, que, si bien las especies incluidas en el listado de la norma referida recibirían especial atención, la mayor parte de las medidas encaminadas a prevenir, minimizar y/o mitigar la afectación de los componentes flora y fauna no discernirán la inclusión o no de las especies en este listado y se aplicarían de manera general.

- X. Que con el objeto de verificar el cumplimiento de la obligación prevista por el artículo 118 de la LGDFS y el lineamiento DÉCIMO del Acuerdo, conforme al procedimiento previsto por los artículos 123 y 124 del RLGDFS, esta autoridad administrativa se abocó al cálculo del monto de compensación ambiental para ser destinados a las actividades de reforestación o restauración y su mantenimiento, determinándose lo siguiente:
 - Que mediante oficio N° SGPA/DGGFS/712/3384/16 de fecha 13 de diciembre del 2016, esta Dirección General de Gestión Forestal y de Suelos, notificó al Ing. Marco Antonio Loya Izaguirre, en su carácter de Residente Regional Peninsular de la Comisión Federal de Electricidad, que como parte del procedimiento para expedir la autorización de cambio de uso de suelo forestal, debería depositar ante el Fondo Forestal Mexicano, la cantidad de \$54,079.57 (Cincuenta y cuatro mil setenta y nueve pesos con 57/100 M.N.), por concepto de compensación ambiental para realizar actividades de reforestación o restauración y su mantenimiento en una superficie de 2.94 hectáreas, de los cuales \$30,406.09 pesos son para el estado de Campeche correspondiente a 1.0407 hectáreas de selva mediana subperennifolia y 0.6150 hectáreas de selva baja subcaducifolia y para el estado de Quintana Roo son \$23,673.48 pesos para 1.2891 hectáreas se selva mediana subperennifolia prefetentemente.
 - Que mediante oficio N° N22F0- 0012/17 de fecha 3 de enero del 2017, recibido en esta Dirección General de Gestión Forestal y de Suelos el día 5 de enero del 2017, el Ing. Marco Antonio Loya Izaguirre, en su carácter de Residente Regional Peninsular de la Comisión Federal de Electricidad, presentó copia del comprobante del depósito realizado al Fondo Forestal Mexicano (FFM) por la cantidad de \$54,079.57 (Cincuenta y cuatro mil setenta y nueve pesos con 57/100 M.N.), por concepto de compensación ambiental para realizar actividades de reforestación o restauración y su mantenimiento en una superficie de 2.94 hectáreas.
- XI. Conforme al lineamiento DÉCIMO del Acuerdo y al artículo 44 del Reglamento en Materia de Evaluación del Impacto Ambiental, esta Dirección General dictaminó la

Oficio N° SGPA/DGGFS/712/0789/17

viabilidad ambiental del proyecto que obliga a esta DGGFS a considerar, en los procesos de evaluación de impacto ambiental, los posibles efectos de las actividades a desarrollarse, en el o los ecosistemas de que se trate, tomando en cuenta el conjunto de los elementos que los conforman y no únicamente los recursos que fuesen objeto de aprovechamiento o afectación; así como la utilización de los recursos naturales de forma que se respete la integridad funcional y las capacidades de carga de los ecosistemas de los que forman parte dichos recursos, para lo cual, esta Dirección General de Gestión Forestal y de Suelos sustentó su decisión en los siguientes razonamientos:

- La superficie que será sujeta a cambio de uso de suelo forestal es de 0.6576 hectáreas.
- Existen suficientes vías de acceso principal, no sólo la carretera Chetumal-Villahermosa, en su tramo Xpujil – Xul Ha, sino también las brechas y caminos perpendiculares a la misma que se utilizan para el acceso a parcelas y zonas de cultivo por parte de los pobladores.
- No se afectarán ecosistemas prístinos, toda vez que se observa el impacto ocasionado por las actividades agropecuarias en la zona. Como evidencia de lo anterior, los sitios propuestos se encuentran en áreas de uso común de dos ejidos, así como de un predio particular.
- Desde el punto de vista de la vegetación, ésta es característica de toda la región y en el sitio propuesto se encontraron especies de flora en estatus, de acuerdo con la Norma Oficial Mexicana NOM-059-SEMARNAT-2010, las cuales por su ubicación, tallas y abundancia son factibles de ser sujetas a acciones de rescate y reubicación;
- Debido a la magnitud de las obras y la proximidad de zonas urbanas e infraestructura diversa, en los sitios propuestos, se observa un componente faunístico poco representado, por lo que, considerando que el proyecto no confinará el área, no se ocasionará un impacto significativo sobre el componente faunístico en cuanto a sus corredores biológicos, además se espera que la fauna continúe con la utilización de los mismos espacios con el proyecto en operación.
- Con respecto al paisaje, el sitio presenta una baja a media calidad paisajística debido a la infraestructura ya existente y a las zonas de cultivo que ocupan amplias extensiones.
- Las condiciones topográficas del terreno también se consideraron en la selección del sitio debido a que la principal actividad durante la construcción del proyecto es

Oficio N° SGPA/DGGFS/712/0789/17

la nivelación y movimiento de tierras, por lo que fue preferible seleccionar una trayectoria con el mínimo de pendientes pronunciadas.

Que por los razonamientos arriba expuestos, de conformidad con las disposiciones legales invocadas y con fundamento en lo dispuesto por los artículos 14, 18, 26, 32 Bis fracciones I, III, IX, XXXIX y XLI de la Ley Orgánica de la Administración Pública Federal; 7 fracción V, 12 fracción XXIX, 16 fracción XX, 58 fracción I, 117, 118 y 171 de la Ley General de Desarrollo Forestal Sustentable; 3 fracción I y XIX, 4, 5 fracciones II, X, XI y XXI, 15 fracciones IV, VI, XI y XII, 28 primer párrafo y fracción VII, 30, 34 y 35 párrafos primero, segundo y último, 35 BIS, 109 BIS 1 y 176 de la Ley General del Equilibrio Ecológico y la Protección al Ambiente; 2, 3 fracciones I, XII, XIII, XIV, XVI y XVII, 4 fracciones I, IV, V y VII, 5 inciso O fracción I, 9 primer párrafo, 21, 37 primer párrafo, 44, 45 fracción II, 47 y 49 del Reglamento de la LGEEPA; 2, 3, 16 fracciones VII, IX y X, 35, 57 fracción I y 59 de la Ley Federal de Procedimiento Administrativo; 2 fracción XXIV, 19 fracciones XXIII, XXV, XXVI y XXVIII, y 33 fracciones l y V del Reglamento Interior de la Secretaría de Medio Ambiente y Recursos Naturales y en el Acuerdo por el que se expiden los lineamientos y procedimientos para solicitar en un trámite único ante la Secretaría de Medio Ambiente y Recursos Naturales las autorizaciones en materia de impacto ambiental y en materia forestal que se indican y se asignan las atribuciones correspondientes en los servidores públicos que se señalan, es de resolverse y se

RESUELVE

PRIMERO.- <u>AUTORIZAR</u> en materia de impacto ambiental y por excepción el cambio de uso de suelo forestal en una superficie de 0.6576 hectáreas, para el desarrollo del proyecto denominado *Construcción de los Sistemas de Radio Repetidor para las Líneas de Transmisión Escárcega Potencia – Xpujil y Xpujil – Xul Ha, ubicado en los municipios de Calakmul en el estado de Campeche y Othón P. Blanco en el estado de Quintana Roo, promovido por el lng. Marco Antonio Loya Izaguirre, en su carácter de Residente Regional Peninsular de la Comisión Federal de Electricidad, bajo los siguientes:*

TÉRMINOS

I. Se autoriza a la Comisión Federal de Electricidad, a través del Ing. Marco Antonio Loya Izaguirre, en su carácter de Residente Regional Peninsular, el cambio de uso de suelo forestal, así como del impacto ambiental derivado de la remoción de vegetación forestal en una superficie de 0.6576 hectáreas, para el desarrollo del proyecto denominado Construcción de los Sistemas de Radio Repetidor para las Líneas de Transmisión Escárcega Potencia — Xpujil y Xpujil — Xul Ha, ubicado en los

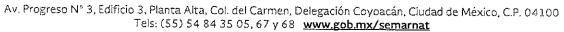
- municipios de Calakmul en el estado de Campeche y Othón P. Blanco en el estado de Quintana Roo.
- II. Los tipos de vegetación forestal por afectar son Selva mediana subperennifolia y Selva baja subcaducifolia.
- III. El cambio de uso de suelo forestal que se autoriza comprende tres polígonos que se ubicarán en el Ejido Ramonal Río Hondo, en el municipio de Othón P. Blanco en el estado de Quintana Roo, en el predio particular Las Delicias y Ejido Hopolchen en el municipio de Calakmul en el estado de Campeche, conforme a las siguientes coordenadas UTM:

	Radio Repetido	or 1
Vértices	X	Y
7	310678.980	2043786.260
2	310708.810	2043789.450
3	310710.930	2043769.560
2 4	310681.110	2043766.370
	Camino de acc	eso
Prince Sept.	310723.022	2044214.419
2	310728.004	2044215.031
**3	310740.150	2044131.420
4	310655.810	2044048.730
<u></u>	310683.950	2043786,791
. 6	310681.463	2043786.526
7.1.	310678.980	2043786.260
8 8	310650.580	2044050.600
9	310734.840	2044133,210

	Radio Repetio	dor 2
Vértices	X	γ
1. 4 1 000.	260871.610	2045461.360
2	260901.290	2045456.980
3	260898.375	2045437.194
4	260868.690	2045441.580
	Camino de ac	ceso
1	260923.172	2045810.596
2	260928.035	2045809.266

Oficio N° SGPA/DGGFS/712/0789/17

3	260904.943	2045652.859
4	260876.560	2045460.630
5	260871.610	2045461.360
6	260899.988	2045653.567


	Radio Repet	idor/3
Vértices	X	Y
1	207457.227	2050492.741
2	207487.220	2050492.060
3	207486.770	2050472.070
4	207456.780	2050472.740
	Camino de a	cceso
1 1	207483.714	2050335.810
2	207478.720	2050335.950
3	207480.449	2050413.186
4	207481.770	2050472.180
5	207486.770	2050472.070
6	207485.440	2050412.672

IV. El volumen de las materias primas forestales a remover con el cambio de uso de suelo forestal y el código de identificación para acreditar la legal procedencia de dichas materias primas forestales; son los siguientes:

Código de identificación: C-23-004-TUC-001/17

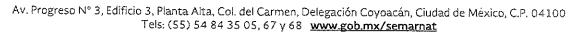
Carrier to the Control of the Carrier to the Carrie	
ESPECIE	VOLUMEN RADIO REPETIDOR 1 (m³)
Acacia cornigera	0.079
Bursera simaruba	6.119
Byrsonima bucidaefolia	0.053
Caesalpinia gaumeri	0.985
Caesalpinia mollis	0.142
Caesalpinia yucatanensis	0.286
Cascabela gaumeri	0.595
Cecropia peltata	0.063
Chrysophyllum mexicanum	0.143

Oficio N° SGPA/DGGFS/712/0789/17

ESPECIE	VOLUMEN RADIO REPETIDOR 1 (m³)
Coccoloba acapulcensis	1.685
Coccoloba diversifolia	0.089
. Coccoloba spicata	0.075
Croton arboreus	0.155
Croton reflexifolius .	0.186
Cupania belizensis	0.110
Dendropanax arboreus	0.019
Diospyros yucatanensis	0.012
Drypetes laterifolia	0.548
Eugenia acapulcensis	0.213
Ficus cotinifolia	0.416
Ficus obtusifolia	0.089
Gliricidia maculata	0.300
Guazuma ulmifolia	0.115
Guettarda combsii	0.493
Guettarda gaumeri	1.089
Gymnanthes lucida	5.748
Gymnopodium floribundum	2.145
Hampea trilobata	0.697
Jatropha gaumeri	5.769
Lonchocarpus rugosus	0.015
Lonchocarpu xuul	0.173
Lysiloma latisiliquum	0.520
Manilkara sapota	0.025
Matayba oppositifolia	0.166
Metopium brownei	0.068
Mimosa bahamensis	0.148
Nectandra coriacea	1.904
Neea psychotrioides	0.537
Piscidia piscipula	0.049
Plumeria obtusa	0.058
Pouteria amygdalina	0:016
Pouteria campechiana	0.089
Pouteria reticulata	0.551
Protium copal	0.024
Psidium sartorianum	0.105

Av. Progreso N° 3, Edificio 3, Planta Alta, Col. del Carmen, Delegación Coyoacán, Ciudad de México, C.P. 04100 Tels: (55) 54 84 35 05, 67 y 68 <u>www.gob.mx/semarnat</u>

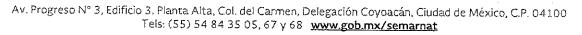
Oficio N° SGPA/DGGFS/712/0789/17


ESPECIE	VOLUMEN RADIO REPETIDOR 1 (m³)
Randia aculeata	0.024
Randia longiloba	0.012
Sabal mexicana	0.688
Sapranthus campechianus	1.065
Semialarium mexicanum	0.349
Senegalia gaumeri	0.012
Senna racemosa	0.620
Sideroxylon salicifolium	0.166
Simarouba amara	0.261
Simira salvadorensis	0.703
Spondias mombin	0.158
Swartzia cubensis	3.661
Swietenia macrophylla	0.793
Talisia floresii	0.084
Terminalia buceras	6.014
Thouinia paucidentata	0.051
Trophis racemosa	1.005
Vitex gaumeri	0.136
Zuelania guidonia	0.292
TOTAL	48.956

Código de identificación: C-04-010-DEL-001/17

ESPECIE		JMEN RADIO TIDOR 2 (m³)
Acacia cornigera		0.064
Bursera simaruba		4.431
Byrsonima bucidaefolia		0.040
Caesalpinia gaumeri	n sygmidilik	1.025
Caesalpinia mollis		0.125
Caesalpinia yucatanensis		0.275
Cascabela gaumeri	N. 3.21	0.414
Cecropia peltata		0.063
Chrysophyllum mexicanum	144 a. 31 2	0.117
Coccoloba acapulcensis	All Park	1.220
Coccoloba diversifolia	San San	0.073

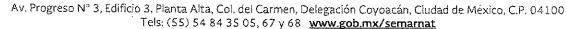
ESPECIE	VOLUMEN RADIO REPETIDOR 2 (m²)
Coccoloba spicata	0.070
Croton arboreus	0.132
Croton reflexifolius	0.152
Cupania belizensis	0.110
Dendropanax arboreus	0.019
Diospyros yucatanensis	0.012
Drypetes laterifolia	0.414
Eugenia acapulcensis	0.196
Ficus cotinifolia	, eg 0.341
Ficus obtusifolia	0.072
Gliricidia maculata	0.246
Guazuma ulmifolia	0.094
Guettarda combsii	0.404
Guettarda gaumeri	0.891
Gymnanthes lucida	4.703
Gymnopodium floribundum	1:755
Hampea trilobata	0.571
Jatropha gaumeri	4.720
Lonchocarpus rugosus	0.013
Lonchocarpu xuul	0.141
Lysiloma latisiliquum	0.520
Manilkara sapota	0.020
Matayba oppositifolia	0.159
Metopium brownei	0.062
Mimosa bahamensis	0.103
Nectandra coriacea	1.557
Neea psychotrioides	0,440
Piscidia piscipula	0.049
Plumeria obtusa	0.047
Pouteria amygdalina	0:013
Pouteria campechiana	0.073
Pouteria reticulata	0.489
Protium copal	0.020
Psidium sartorianum	0.105
Randia aculeata	0.019
Randia longiloba	0.009



Oficio N° SGPA/DGGFS/712/0789/17

ESPECIE	VOLUMEN RADIO REPETIDOR 2 (m²)
Sabal mexicana	0.563
Sapranthus campechianus	0.871
Semialarium mexicanum	0.286
Senegalia gaumeri	0.008
Senna racemosa	0.508
Sideroxylon salicifolium	0.135
Simarouba amara	0.214
Simira salvadorensis	0.598
Spondias mombin	0.129
Swartzia cubensis	2.995
Swietenia macrophylla	0.649
Talisia floresii	0.059
Terminalia buceras	4.537
Thouinia paucidentata	0.042
Trophis racemosa	1.005
Vitex gaumeri	0.131
Zuelania guidonia	0.269
TOTAL	39.585

Código de identificación: C-04-010-TUC-001/17


Secretary company and present the process of the pr	Maria and Aria (Maria Maria) and the Commission of the Commission
ESPECIE	VOLUMEN RADIO REPETIDOR 3 (m²)
Acacia cornigera	1.128
Bursera simaruba	0.093
Byrsonima bucidaefolia	2,366
Caesalpinia gaumeri	0.054
Caesalpinia mollis	1.043
Caesalpinia yucatanensis	5.162
Cascabela gaumeri	0.000
Cecropia peltata	0.417
Chrysophyllum mexicanum	1.618
Coccoloba acapulcensis	0:388
Coccoloba diversifolia	0.612
Coccoloba spicata	0.244
Croton arboreus	0.187

SEMARNAT SECRETARÍA DE MEDIO AMBIENTE Y RECURSOS NATURALES

SUBSECRETARÍA DE GESTIÓN PARA LA PROTECCIÓN AMBIENTAL DIRECCIÓN GENERAL DE GESTIÓN FORESTAL Y DE SUELOS

ESPECIE	VOLUMEN RADIO REPETIDOR 3 (m²)
Croton reflexifolius	0.224
Cupania belizensis	0.316
Dendropanax arboreus	0.160
Diospyros yucatanensis	0.951
Drypetes laterifolia	0.297
Eugenia acapulcensis	2.672
Ficus cotinifolia	0.158
Ficus obtusifolia	0:884
Gliricidia maculata	1.016
Guazuma ulmifolia	1.752
Guettarda combsii	4.537
Guettarda gaumeri	0.594
Gymnanthes lucida	0.000
Gymnopodium floribundum	0.712
Hampea trilobata	-0.704
Jatropha gaumeri	11.456
Lonchocarpus rugosus	0.131
Lonchocarpu xuul	0.756
Lysiloma latisiliquum	2.118
Manilkara sapota	0.306
Matayba oppositifolia	7.549
Metopium brownei	0.397
Mimosa bahamensis	1.528
Nectandra coriacea	0.093
Neea psychotrioides	0.152
Piscidia piscipula	0.113
Plumeria obtusa	0.204
Pouteria amygdalina	0.734
Pouteria campechiana	0.566
Pouteria reticulata	0.190
Protium copal	0.276
Psidium sartorianum	1,055
Randia aculeata	0.245
Randia longiloba	0.556
Sabal mexicana	0.000
Sapranthus campechianus	0.341

ESPECIE	VOLUMEN RADIO REPETIDOR 3 (m³)
Semialarium mexicanum	0.094
Senegalia gaumeri	0.418
Senna racemosa	0.152
Sideroxylon salicifolium	1.236
Simarouba amara	0.228
Simira salvadorensis	1.128
Spondias mombin	0.093
Swartzia cubensis	2.366
Swietenia macrophylla	0.054
Talisia floresii	1.128
Terminalia buceras	0.093
Thouinia paucidentata	2.366
Trophis racemosa	0.054
Vitex gaumeri	1.043
Zuelania guidonia	5.162
TOTAL	72.668

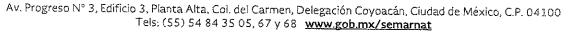
- V. En caso de que se requiera aprovechar y trasladar las materias primas forestales, de conformidad con el artículo 126 del Reglamento de la Ley General de Desarrollo Forestal Sustentable, el titular de la presente autorización deberá tramitar ante las Delegaciones Federales de la SEMARNAT en los estados de Campeche y Quintana Roo, la solicitud de remisiones forestales con las que acreditará la legal procedencia de las mismas.
- VI. De conformidad con lo dispuesto en el lineamiento Décimo del Acuerdo y lo establecido por el párrafo cuarto del artículo 35 de la LGEEPA, que establecen que una vez evaluado el documento mediante el cual se da a conocer, con base en estudios, el impacto ambiental significativo y potencial que generaría una obra o actividad, así como la forma de evitarlo o atenuarlo en caso de que sea negativo, la Secretaría emitirá la resolución correspondiente en la que podrá autorizar de manera condicionada la obra o actividad de que se trate y considerando lo establecido por el artículo 47 primer párrafo del Reglamento de la LGEEPA en materia de evaluación del impacto ambiental que establece que la ejecución de la obra o la realización de la actividad de que se trate, deberá sujetarse a lo previsto en la resolución respectiva, esta DGGFS establece que la ejecución de las actividades autorizadas del proyecto, estarán sujetas a la descripción contenida en el DTU-A y a las coordenadas UTM a

Oficio N° SGPA/DGGFS/712/0789/17

las que refiere el Término III, así como a lo dispuesto en la presente autorización conforme a las siguientes:

CONDICIONANTES:

El **promovente** deberá:


- 1. Con base en lo estipulado en los artículos 28 de la LGEEPA y 44 fracción III del REIA, esta DGGFS determina que el **promovente** deberá cumplir con todas y cada una de las medidas de prevención, mitigación y/o compensación que propuso en el **DTU-A**, las cuales son viables de ser instrumentadas y congruentes con la protección al ambiente de la zona de estudio del **proyecto** evaluado, por lo que el **promovente** deberá mostrar evidencia e indicadores de evaluación para llevar a cabo su adecuada ejecución dentro de un <u>Programa de Monitoreo y Vigilancia Ambiental</u> señalado en la Condicionante 3, fracción VIII del presente oficio resolutivo.
- **2.** Con fundamento en lo establecido en los artículos 45 fracción II y 48 del REIA, el **promovente** deberá cumplir con lo siguiente:
 - i. Con el objeto de conservar la biodiversidad presente en el área del **proyecto** en relación a especies de flora y fauna que estén o no catalogadas en la **NOM-O59-SEMARNAT-2010** que pudieran encontrarse y con fundamento en los artículos 79 y 83 primer párrafo de la LGEEPA, así como en lo dispuesto en el párrafo cuarto del artículo 117 de la LGDFS, el promovente deberá presentar a esta DGGFS, las actualizaciones de las acciones de prevención, mitigación y compensación referidas en el Documento Técnico Unificado modalidad A.
 - ii. Se deberá de dar cumplimiento al Programa de Rescate y Reubicación de Especies de Vegetación Forestal afectadas y su adaptación al nuevo hábitat, anexo a la presente resolución. Para dar cumplimiento a lo anterior, el promovente deberá asignar personal capacitado en los diferentes frentes de trabajo para que rescate a los individuos de flora presentes en el sitio que pudieran estar en riesgo por las acciones del **proyecto** y los reubique en las áreas previamente seleccionadas bajo criterios técnicos y biológicos. Los resultados de dichas acciones deberán registrarse en una bitácora de campo que incluya la descripción de las actividades realizadas y deberá contener la siguiente información:
 - a) Justificación de las técnicas seleccionadas para realizar el rescate por especies. En caso de que no sea factible conservar la totalidad del individuo, deberá contemplarse el rescate de partes de ellos (frutos,

SEMARNAT SECRETARÍA DE MEDIO AMBIENTE Y RECURSOS NATURALES

SUBSECRETARÍA DE GESTIÓN PARA LA PROTECCIÓN AMBIENTAL DIRECCIÓN GENERAL DE GESTIÓN FORESTAL Y DE SUELOS

- semillas, esquejes, hijuelos), para su posterior desarrollo en viveros y posterior plantación en las áreas destinadas a la reubicación.
- b) Propuesta de las acciones para el albergue temporal y control del número total de los ejemplares que se vayan rescatando y que requieren ser mantenidos bajo cuidado antes de su plantación final.
- c) Acciones emergentes cuando la sobrevivencia de los ejemplares sea menor al 80% del total de los individuos, con base en lo datos obtenidos en los incisos anteriores, considerando un período de seguimiento de por lo menos cinco años.
- d) Definición de los indicadores de seguimiento de las medidas a utilizar que ofrezcan evidencia del resultado favorable del rescate y la reubicación realizada, por ejemplo, procentaje de supervivencia de las especies reubicadas.
- e) Calendarización de actividades y acciones a desarrollar.
- f) Medidas de mitigación o compensación adicionales derivadas de los posibles impactos originados por la aplicación de las acciones del programa anexo a la presente resolución.
- iii. Las actividades para la protección de especies de fauna silvestre propuestas por el **promovente** deberán considerar las especies que serán protegidas, entre las que se deberán incluir aquellas que se encuentren en alguna categoría de riesgo conforme a la NOM-059-SEMARNAT-2010, así como las que presenten lento desplazamiento. Las actividades deberán considerar los puntos que a continuación se mencionan, los cuales no son limitativos para que el promovente pueda incluir otros que puedan contribuir al éxito de las mismas:
 - a) Identificación y descripción de las áreas de liberación e indicar las especies y número de individuos que, en su caso, serán ahuyentados o reubicados.
 - b) Reporte de las actividades y resultados obtenidos (incluir anexo fotográfico que evidencien las acciones realizadas).
- iv. De realizarse el mantenimiento de maquinaria en el área del proyecto, éste deberá efectuarse sobre superficies provisionales cubiertas con material impermeable que impidan la contaminación del suelo y los cuerpos de agua. En caso de derrame accidental de aceites o combustibles en el área del proyecto, se procederá a remediar el suelo o el cuerpo de agua afectado y deberá dar aviso de inmediato a la autoridad competente para que se pronuncie al

Oficio N° SGPA/DGGFS/712/0789/17

respecto. Los resultados deberán anexarse en los informes semestrales establecidos en el Término XV del presente oficio resolutivo. De igual forma, el promovente deberá establecer los términos contractuales para que el constructor cumpla con las medidas de mitigación propuestas en el Documento Técnico Unificado modalidad A, así como con las condicionantes que sean aplicables durante las diferentes etapas del proyecto.

- v. El material producto del despalme deberá ser dispuesto en sitios que no obstruyan cuerpos de agua, así como a la vegetación natural. Se deberá utilizar el material fértil producto del despalme para el arrope de las áreas de afectación temporal de los caminos de acceso.
- vi. La remoción de la vegetación deberá realizarse por medios mecánicos (motosierra) y manual (hachas y machete) y no se deberán utilizar sustancias químicas y fuego para tal fin. La remoción de la vegetación deberá realizarse de forma gradual y direccional para evitar daños a la vegetación aledaña a las áreas del proyecto, así como para permitir el libre desplazamiento de la fauna silvestre a zonas seguras fuera del proyecto.
- vii. Se deberá de aprovechar el material vegetal producto del desmonte para la elaboración de composta y el recubrimiento del suelo en las áreas adyacentes y de afectación temporal del proyecto.
- viii. Presentar ante esta DGGFS para su seguimiento, en un plazo de 3 meses contados a partir de la recepción de la presente resolución, el <u>Programa de Monitoreo y Vigilancia Ambiental</u>, el cual tendrá como objetivo el seguimiento a los impactos identificados en el DTU-A del proyecto, así como la cuantificación de la eficacia de las medidas preventivas, de mitigación y compensación propuestas por el promovente y las condicionantes establecidas en el presente oficio resolutivo. El promovente deberá presentar a la DGGFS copia de dicho programa, ejecutarlo e ingresar copia ante las Delegaciones de la PROFEPA en los estados de Quintana Roo y Campeche, un reporte de los resultados obtenidos de dichas actividades, acompañado de su respectivo anexo fotográfico que ponga en evidencia las acciones que para tal efecto ha llevado a cabo en las distintas etapas del proyecto. El programa deberá de considerar como contenido mínimo los siguientes puntos:
 - Indicadores para medir el éxito de las medidas instrumentadas.
 - Acciones de respuesta cuando con la aplicación de las medidas no se obtengan los resultados esperados.

- Plazos de ejecución de las acciones y medidas.
- ix. Se deberán de instalar letreros alusivos a la protección de flora y fauna.
- x. Se deberán de llevar a cabo pláticas ambientales dirigidas a todas las personas que estén directamente relacionadas con el proyecto en sus diferentes etapas.
- xi. Se deberán delimitar las áreas que serán afectadas con el cambio de uso de suelo con la finalidad de no alterar las áreas forestales adyacentes y perturbar el hábitat de la fauna silvestre.
- xii. Se deberá de garantizar la conservación de la superficie que se requiere para caminos de acceso como superficie permeable para garantizar la infiltración del agua.
- xiii. Se deberán de instalar contenedores debidamente rotulados para el acopio de basura para cada tipo de residuo que se genere (orgánicos, inorgánicos, etc.).
- xiv. No realizar bajo ninguna circunstancia:
 - Actividades de compra, venta, captura, colecta, comercialización, tráfico o caza de los individuos de especies de flora y fauna silvestres terrestres y acuáticas presentes en la zona del **proyecto** o sus inmediaciones, durante las diferentes etapas que comprende el **proyecto**. Será responsabilidad del **promovente** adoptar las medidas que garanticen el cumplimiento de esta disposición; además, será responsable de las acciones que contrario a lo dispuesto, realicen sus trabajadores o empresas contratistas.
 - El vertimiento del material producto de cortes y excavaciones y/o producto de las obras o actividades de las distintas etapas, en zonas de escorrentías superficiales o sitios que sustenten vegetación forestal, así como, verter o descargar cualquier tipo de materiales, sustancias o residuos contaminantes o tóxicos que puedan alterar las condiciones de escorrentías.
 - Rebasar la superficie de desmonte y despalme fuera de las coordenadas UTM para la cual fue autorizado el cambio de uso del suelo forestal del proyecto, establecidas en el Término III de la presente autorización.
 - Llevar a cabo acciones de reforestación y revegetación con especies exóticas o agresivas que puedan provocar desplazamiento y competencia de poblaciones vegetales nativas.

- VII. El desarrollo del proyecto no incluye el cambio de uso de suelo en terrenos forestales para bancos de materiales, de tiro, ni el establecimiento de campamentos, por lo que de ser necesarios e impliquen la afectación de vegetación forestal adicional a la autorizada, se deberá contar con la autorización correspondiente.
- VIII. Dentro de un plazo máximo de <u>10 días hábiles</u> siguientes a la recepción del presente resolutivo, se deberá notificar por escrito a esta Dirección General, quién será el responsable técnico de dirigir la ejecución del cambio de uso de suelo forestal autorizado, el cual deberá establecer una bitácora de actividades, misma que formará parte de los informes a los que se refiere el Término XVI del presente resolutivo.
 - IX. El promovente será el único responsable de garantizar la realización de las acciones de mitigación, restauración y control de todos aquellos impactos ambientales atribuibles al desarrollo de las actividades del proyecto, que no hayan sido considerados por el mismo en la descripción contenida en el DTU-A.
 - X. En caso de que las obras y actividades autorizadas pongan en riesgo u ocasionen afectaciones que llegasen a alterar los patrones de comportamiento de los recursos bióticos y/o algún tipo de afectación, daño o deterioro sobre los elementos abióticos presentes en el predio del proyecto, así como en su área de influencia, la Secretaría podrá exigir la suspensión de las obras y actividades autorizadas en el presente oficio, así como la instrumentación de programas de compensación, además de alguna o algunas de las medidas de seguridad previstas en el artículo 170 de la LGEEPA.
- La presente autorización tendrá una vigencia para llevar a cabo las actividades de XI. remoción de vegetación forestal derivada de la autorización de cambio de uso de suelos en terrenos forestales de un año. La vigencia otorgada para el proyecto podrá ser modificada a solicitud del promovente, previa acreditación de haber cumplido satisfactoriamente con todos los Términos y Condicionantes del presente resolutivo, así como de las medidas de prevención, mitigación o compensación establecidas por el promovente en la documentación presentada. Para lo anterior, deberá solicitar por escrito a esta DGGFS la aprobación de su solicitud, conforme a lo establecido en el trámite COFEMER con número de homoclave SEMARNAT-04-008 de forma previa a la fecha de su vencimiento. Cabe señalar que dicho trámite corresponde únicamente en materia de impacto ambiental. Asimismo, dicha solicitud deberá acompañarse de un informe suscrito por el representante legal del promovente, debidamente acreditado, con la levenda de que se presenta bajo protesta de decir verdad, sustentándolo en el conocimiento previo del promovente a las fracciones II, IV y V del artículo 420 Quater del Código Penal Federal.

Oficio N° SGPA/DGGFS/712/0789/17

El informe antes citado deberá detallar la relación pormenorizada de la forma y resultados alcanzados con el cumplimiento a los Términos y Condicionantes establecidos en la presente autorización.

El informe referido podrá ser sustituido por los documentos oficiales emitidos por las Delegaciones de la Procuraduría Federal de Protección al Ambiente (PROFEPA) en los estados de Quintana Roo y Campeche, a través de los cuales dichas instancias hagan constar la forma como el promovente ha dado cumplimiento a los Términos y Condicionantes establecidos en la presente autorización; en caso contrario, no procederá dicha gestión.

- XII. De conformidad con los artículos 35 último párrafo de la LGEEPA y 49 de su REIA, la presente autorización se refiere única y exclusivamente a los impactos ambientales por la remoción de la vegetación forestal descritas en su Término Primero para el proyecto, asimismo, esta autorización no exime a su titular de solicitar y obtener aquellas otras licencias, permisos o autorizaciones que, en su caso, corresponda otorgar a otras autoridades Federales, Estatales o Municipales, para el desarrollo o ejecución del proyecto.
- XIII. La presente resolución no autoriza la construcción, operación y/o ampliación de ningún tipo de infraestructura, ni el desarrollo de actividades que no estén listadas en el Término I del presente oficio.
- XIV. El promovente queda sujeto a cumplir con la obligación contenida en el artículo 50 del Reglamento de la LGEEPA en materia de evaluación del impacto ambiental, en caso de que se desista de realizar las obras y actividades, motivo de la presente autorización, para que esta DGGFS proceda, conforme a lo establecido en su fracción II, y en su caso, determine las medidas que deban adoptarse a efecto de que no se produzcan alteraciones nocivas al ambiente.
- XV. El promovente, en el supuesto de que decida realizar modificaciones al proyecto, deberá solicitar la autorización respectiva a esta DGGFS, en los términos previstos en el artículo 28 del REIA, con la información suficiente y detallada que permita a esta autoridad, analizar si el, o los cambios decididos no causarán desequilibrios ecológicos, ni rebasarán los límites y condiciones establecidos en las disposiciones jurídicas relativas a la protección al ambiente que le sean aplicables, así como lo establecido en los Términos y Condicionantes del presente oficio. Para lo anterior, previo al inicio de las obras y/o actividades que se pretendan modificar, el promovente deberá notificar dicha situación a esta DGGFS, en base al trámite

Oficio N° SGPA/DGGFS/712/0789/17

COFEMER con número de homoclave SEMARNAT-04-008. Queda prohibido desarrollar actividades distintas a las señaladas en la presente autorización.

- XVI. El promovente deberá presentar informes de cumplimiento de los Términos y Condicionantes del presente resolutivo y de las medidas que propuso en el DTU-A. El informe citado, deberá ser presentado a las Delegaciones de la PROFEPA en los estados de Quintana Roo y Campeche con una periodicidad semestral durante el tiempo de ejecución solicitado. Una copia de este informe deberá ser presentado a la DGGFS.
- XVII. La presente resolución a favor del promovente es personal. Por lo que de conformidad con el artículo 49 segundo párrafo del Reglamento de la LGEEPA en materia de evaluación del impacto ambiental, en el cual dicho ordenamiento dispone que el promovente deberá dar aviso a la Secretaría del cambio de titularidad de la autorización, por lo que en caso de que esta situación ocurra, deberá ingresar un acuerdo de voluntades en el que se establezca claramente la cesión y aceptación total de los derechos y obligaciones de la misma. Asimismo, deberá de dar cumplimiento al artículo 17 del Reglamento de la LGDES que establece que las modificaciones de los datos inscritos deberán informarse al Registro, mediante aviso.

SEGUNDO.– La SEMARNAT, a través de la PROFEPA, vigilará el cumplimiento de los Términos y Condicionantes establecidos en el presente instrumento, así como los ordenamientos aplicables en materia de impacto ambiental y forestal. Para ello ejercerá, entre otras, las facultades que le confiere los artículos 55, 59 y 61 del Reglamento de la Ley General del Equilibrio Ecológico y la Protección al Ambiente en materia de evaluación del impacto ambiental y 158, 160, 161 de la Ley General de Desarrollo Forestal Sustentable y 174 de su Reglamento.

TERCERO.- Se hace del conocimiento del **promovente**, que la presente resolución emitida, con motivo de la aplicación de la LGEEPA, LGDFS y sus Reglamentos respectivos, así como el **Acuerdo** y las demás previstas en otras disposiciones legales y reglamentarias en la materia, podrá ser impugnada, mediante el recurso de revisión, conforme a lo establecido en los artículos 176 de la LGEEPA, 171 de la LGDFS y 3, fracción XV, de la Ley Federal de Procedimiento Administrativo.

CUARTO.- Se remite copia del presente resolutivo, a las Delegaciones de la SEMARNAT en los estados de Quintana Roo y Campeche, para su inscripción en el Libro del Registro Forestal de dichos estados, de conformidad con el artículo 40 fracción XX del Reglamento

Oficio N° SGPA/DGGFS/712/0789/17

Interior de la Secretaría de Medio Ambiente y Recursos Naturales y para la captura del Registro en el Sistema Nacional de Gestión Forestal.

QUINTO.- Notifíquese personalmente al Ing. Marco Antonio Loya Izaguirre, en su carácter de Residente Regional Peninsular de la Comisión Federal de Electricidad, la autorización del proyecto denominado **Construcción de los Sistemas de Radio Repetidor para las Líneas de Transmisión Escárcega Potencia – Xpujil y Xpujil – Xul Ha**, ubicado en los municipios de Calakmul en el estado de Campeche y Othón P. Blanco en el estado de Quintana Roo, por alguno de los medios legales previstos en el artículo 35 y demás correlativos de la Ley Federal de Procedimiento Administrativo.

ATENTAMENTE EL DIRECTOR GENERAL

SEMARNAT

ONIDOS

SUBSECRETARIA DE GESTIÓN PARA

NA PROTECCIÓN SERVICION PARA

NA PROTECCIÓN PARA

NA PROT

LIC. AUGUSTO MIRAFUENTES ESPINOSA

"Las copias de conocimientó de este asunto son remitidas vía electrónica".

C.c.e.p. Q.F.B. Martha Garcíarivas Palmeros, Subsecretaria de Gestión para la Protección Ambental.- Presente.
Lic. Rocío Adriana Ábreu Artiñano, Delegada Federal de la SEMARNAT el estado de Campeche.- Presente.
Lic. Renán Eduardo Sánchez Tajonar, Delegado Federal de la SEMARNAT en el estado de Quintana Roo.- Presente.
Lic. Luis Enrique Mena Calderón, Delegado de la PROFEPA en el estado de Campeche.- Presente.
Lic. Carolina García Cañón, Delegada de la PROFEPA en el estado de Quintana Roo.- Presente.
Ing. Jesús Carrasco Gómez, Coordinador General de Conservación y Restauración de la CONAFOR.- Presente.
Lic. Jorge Camarena García, Coordinador General de Administración de la CONAFOR.
Lic. Joaquín del Carmen Álvarez Arana, Gerente estatal de la CONAFOR en el estado de Campeche.- Presente.
Ing. Rafael León Negrete, Gerente estatal de la CONAFOR en el estado de Quintana Roo.- Presente.

Registro: 0018 Bitácora: 09/MA-0116/07/16 FGG/GRR/HHM/VMHR

> Av. Progreso N° 3, Edificio 3, Planta Alta, Col. del Carmen, Delegación Coyoacán, Ciudad de México, C.P. 0 Tels: (55) 54 84 35 05, 67 y 68 <u>www.gob.mx/semarnat</u>

Oficio N° SGPA/DGGFS/712/0789/17

Bitácora: 09/MA-0116/07/16

ANEXO

PROGRAMA DE RESCATE Y REUBICACIÓN DE ESPECIES DE VEGETACIÓN FORESTAL DEL PROYECTO DENOMINADO "CONSTRUCCIÓN DE LOS SISTEMAS DE RADIO REPETIDOR PARA LAS LÍNEAS DE TRANSMISIÓN ESCÁRCEGA POTENCIA — XPUJIL Y XPUJIL — XUL HA", UBICADO EN LOS MUNICIPIOS DE CALAKMUL EN EL ESTADO DE CAMPECHE Y OTHÓN P. BLANCO EN EL ESTADO DE QUINTANA ROO.

I. INTRODUCCIÓN.

El presente Programa de Rescate y Reubicación de Especies de Vegetación Forestal, ha sido diseñado con la finalidad de contribuir al desarrollo sustentable de infraestructura y servicios que promueve la Comisión Federal de Electricidad en la Península Yucatán. Este programa se presenta como alternativa para asegurar la conservación de las especies de flora silvestre que se encuentran enlistadas en la NOM-059-SEMARNAT-2010 y a las medidas de mitigación propuestas en el DTU-A realizado para solicitar la autorización de cambio de uso del suelo en terrenos forestales con motivo de la **Construcción de los Sistemas de Radio Repetidor para las Líneas de Transmisión Escárcega Potencia - Xpujil y Xpujil - Xul Ha**

En un sentido complementario, la presentación y aplicación del Programa de Rescate y Reubicación de Especies de Vegetación Forestal, da cumplimiento a lo establecido en el artículo 123 Bis del Reglamento de la Ley General de Desarrollo Forestal Sustentable.

II. OBJETIVO.

II.1. Objetivo general.

El objetivo general de este programa es determinar las acciones para rescatar, reubicar y dar un manejo adecuado los individuos de las especies de flora susceptibles de ser removidos y reubicados, incluyendo las especies enlistadas en la NOM-059-SEMARNAT-2010 y aquellas especies cuyas poblaciones sean de importancia ecológica para la zona.

II.2. Objetivos específicos.

 Realizar las actividades y proponer estrategias de rescate y reubicación que permitan / obtener un 80% de supervivencia de las especies de flora contempladas en la NOM-059-

Oficio N° SGPA/DGGFS/712/0789/17

Bitácora: 09/MA-0116/07/16

SEMARNAT-2010 y aquellas especies cuyas poblaciones sean de importancia ecológica para la zona, a través del empleo de equipo, material y mano de obra capacitada.

• Establecer las especies y el número de individuos de cada una a rescatar, así como los procedimientos a través de los cuales se llevarán a cabo las actividades de rescate. Lo anterior, deberá ser durante la delimitación de las áreas de desmonte permanente y temporal o selectivo, que evite la pérdida de germoplasma.

III. METAS.

Especies a rescatar en la superficie del ecosistema de selva mediana subperennifolia.

ESPECIE	80% DE SUPERVIVENCIA DE LOS INDIVIDUOS RESCATADOS
Acacia cornigera	
Byrsonima bucidaefolia	
Caesalpinia gaumeri	9
Caesalpinia mollis	
Caesalpinia yucatanensis	
Chrysophyllum mexicanum	4
Coccoloba acapulcensis	1
Coccoloba diversifolia	
Croton arboreus	2
Drypetes laterifolia	
Ficus cotinifolia	
Ficus obtusifolia	
Gliricidia maculata	
Guazuma ulmifolia	
Jatropha gaumeri	2.
Mimosa bahamensis	
Nectandra coriacea	2
Neea psychotrioides	
Plumeria obtusa	
Pouteria amygdalina	2
Pouteria campechiana	12

Oficio N° SGPA/DGGFS/712/0789/17

Bitácora: 09/MA-0116/07/16

ESPECIE	80% DE SUPERVIVENCIA DE LOS INDIVIDUOS RESCATADOS
Pouteria reticulata	5
Protium copal	3
Randia aculeata	1
Sabal mexicana	5
Simira salvadorensis	3
Spondias mombin	1
Swartzia cubensis	. 6
Swietenia macrophylla	4
Talisia floresii	1
Terminalia buceras	3 4 2 7 1 1
Trophis racemosa	2
Vitex gaumeri	22
Zuelania guidonia	54 A 2 3 3 3 5 6 7 5 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Total	110

Especies a rescatar en la superficie del ecosistema de selva baja subcaducifolia.

ESPECIE	80% DE SUPERVIVENCIA DE LOS INDIVIDUOS RESCATADOS
Acacia cornigera	6
Bursera simaruba	
Caesalpinia mollis	5
Caesalpinia yucatanensis	6
Cecropia peltata	18
Coccoloba acapulcensis	
Coccoloba diversifolia	40
Coccoloba spicata	
Cupania belizensis	16
Dendropanax arboreus	5
Diospyros yucatanensis	4
Drypetes laterifolia	4
Ficus obtusifolia	4
Gliricidia maculata	3
Guazuma ulmifolia	11

Oficio N° SGPA/DGGFS/712/0789/17

Bitácora: 09/MA-0116/07/16

	80% DE SUPERVIVENCIA DE LOS
ESPECIE	INDIVIDUOS RESCATADOS
Guettarda combsii	5
Guettarda gaumeri	29
Jatropha gaumeri	23
Matayba oppositifolia	7
Metopium brownei	7
Nectandra coriacea	8
Neea psychotrioides	10
Piscidia piscipula	4
Plumeria obtusa	14
Pouteria amygdalina	4
Pouteria campechiana	24
Pouteria reticulata	
Protium copal	
Sabal mexicana	
Sapranthus campechianus	
Senegalia gaumeri	1.50
Senna racemosa	
Simira salvadorensis	
Spondias mombin	3
Swartzia cubensis	
Swietenia macrophylla	
Talisia floresii	5
Thouinia paucidentata	5. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
Trophis racemosa	
Vitex gaumeri	19
Total	346
Sa. 707 22 \$	Samuel Company of the

IV. METODOLOGÍA PARA EL RESCATE DE ESPECIES.

Muestreo previa identificación de los individuos a rescatar.

Los sitios prioritarios de rescate son aquellos localizados en las áreas forestales solicitadas y autorizadas para realizar el cambio de uso del suelo.

Oficio N° SGPA/DGGFS/712/0789/17

Bitácora: 09/MA-0116/07/16

Marcaje de individuos.

Antes de realizar las actividades de extracción, se capacitará al personal contratado, indicándoles las especies que se van a extraer, de tal forma que cada uno pudiese reconocer a los individuos de las especies "objetivo" del rescate; se tomó esta medida para prevenir la omisión en el marcaje de algunos individuos.

El marcaje de los individuos a rescatar, consiste en colocar una cinta (flag) de color amarillo o de cualquier otro color llamativo, a una altura fácilmente observable desde la distancia o, alrededor de la planta a rescatar en caso de que ésta no se encuentre rodeada de vegetación densa.

Extracción.

Una vez marcadas las plantas se procederá a la extracción de los individuos. Existen tres técnicas empleadas las cuales se describen a continuación:

- 1) Extracción con cepellón (la tierra adherida a las raíces de la planta) y reubicación inmediata: Consiste en extraer las plantas con la mayor cantidad posible de suelo adherido a su sistema radicular o de raíces, lo que puede realizarse manualmente o con la ayuda de herramientas. Una vez extraídas son transportadas de inmediato a sitios cercanos, en áreas que no serán afectadas por la construcción del proyecto, donde son plantadas nuevamente. Este método es especialmente útil cuando se cuenta con tiempo suficiente antes de dar inicio las labores constructivas de los proyectos y su ejecución coincide con la temporada de lluvias.
- 2) Extracción con cepellón, mantenimiento en vivero y replantación: Se procede de manera similar al método anterior, con la diferencia de que las plantas son transportadas y mantenidas en vivero durante el tiempo que demore la construcción de la obra, para ser reubicadas posteriormente; esto puede realizarse dentro del área de derecho de vía; esta técnica asegura un mejor control sobre las plantas rescatadas, evitando daños accidentales durante la ejecución del proyecto.
- 3) Extracción sin cepellón, aclimatación en vivero temporal y posterior reubicación: En algunos casos los individuos se encuentran fuertemente adheridos a laja o suelo rocoso. En tal situación, las plantas son extraídas sin suelo. Posteriormente a la actividad de extracción se procede al trasplante en bolsas utilizando para su relleno el suelo del lugar de extracción. En caso de que el trasplante no pueda realizarse de forma inmediata no se prevé que esto repercuta en la pérdida del ejemplar, ya que incluso la acción deshidratante del sol y el aire, favorecen la cicatrización y dificulta el desarrollo de microorganismos que pudieran causar la pudrición de la planta. Los individuos embolsados son trasladados a un vivero temporal para su aclimatación; este vivero o viveros se ubicarán en zonas arboladas con dosel cerrado con características semejantes

Oficio N° SGPA/DGGFS/712/0789/17

Bitácora: 09/MA-0116/07/16

a las del sitio de extracción. Finalmente, los ejemplares son ubicados de nuevo en su medio natural.

Traslado al área próxima a la zona de reubicación.

Las plantas se depositarán en cajas o directamente en el medio de transporte buscando protegerlas de la resequedad ocasionada por corrientes de aire, si es necesario se colocarán en bolsas con un poco de suelo del lugar de extracción.

Una vez que las plantas se encuentren aclimatadas, se procederá a reubicarlas (reforestar) en las áreas verdes, en este caso, se proponen terrenos de la Reserva de la Biosfera Calakmul, en la zona de conectividad entre esta reserva con la reserva de Sian Ka´an, la cual se ubica relativamente cercana a los sitios del proyecto.

La forma de manejo de las plantas para su reubicación en las áreas de restauración integral se describe a continuación.

Preparación de las pocetas.

Se prepara una poceta de 20 x 20 cm a 200 x 200 cm, según el tamaño esperado de la planta adulta, esto es, será más grande conforme la talla que llega a adquirir la especie y conforme el suelo sea menos fértil. Por lo general 30 x 30 cm es aceptable. Se rellena parcialmente la poceta, de preferencia con un sustrato similar al de la procedencia del ejemplar, o con un sustrato mejorado si el suelo del sitio es pobre o con la capa superficial del mismo suelo que generalmente es la más fértil.

Trasplante.

Antes de iniciar y durante el mismo, se requiere monitorear las condiciones climáticas previas a la fecha de realización. Así se propone realizar el trasplante cuando en días previos se haya presentado algún evento de precipitación alta.

Asimismo, y dependiendo de la identidad y tamaño de la especie por trasplantar, es importante que el sistema radicular de la planta no esté limitado por la falta de espacio. Es preferible seleccionar una planta pequeña para una poceta pequeña (de al menos 50 cm de profundidad) y no para una poceta grande (de 1 m de profundidad). Se sugiere antes de introducir la planta a la poceta, humedecer la planta con agua, depositar un poco de material orgánico al fondo de la misma y rellenar con tierra.

Se deberá evitar el rescate de plantas en la época de sequía, a menos que sea la colecta de semillas o esquejes. En caso de efectuarse el rescate y reubicación en época de secas, se deberá de asegurar el suministro de agua para las plantas a través de riegos de auxilio.

Toda vez que la poceta esté completamente rellena, se sugiere utilizar parte del material orgánico triturado para depositarlo en la poceta (hojarasca de las áreas contiguas a la poceta), de esta forma, se aumentará la capacidad de retención de agua del sustrato de

Oficio N° SGPA/DGGFS/712/0789/17

Bitácora: 09/MA-0116/07/16

siembra.

Si la planta es endeble se introducirá una vara delgada y fuerte (tutor) antes de rellenar la poceta y al final amarrar la planta al tutor con tiras de hule o de polietileno. Es preferible y se recomienda hacer la plantación en la época de lluvias, pero en cualquier época que se haga es esencial un riego cuidadoso previo al trasplante.

En lo que respecta a la distancia entre poceta y poceta dependerá de las áreas seleccionadas y de la vegetación original que se distribuya en el mismo. A manera de propuesta, se recomienda que las pocetas para la ubicación de individuos estén separadas cada dos metros (densidad de 2m x 2m). La plantación se hará en distribución irregular pretendiendo imitar al azar, pero buscando el cubrimiento de una mayor superficie.

Arreglo de las plantaciones.

Para una mejor distribución y monitoreo de la reubicación, es recomendable realizar la reforestación con las especies rescatadas a no más de 4 metros cada una.

Consideraciones generales.

Se mantendrán en el sitio las plantas de gran porte y alturas considerables (hasta 3 metros) que no interfieran con el diseño del proyecto. Aquellas en las que irremediablemente tengan que ser removidas, se realizarán maniobras de rescate y reubicación en las áreas propuestas.

Es importante mencionar que, en el caso de los individuos propuestos a rescate que por su cercanía con un área de conservación sea más efectiva su reubicación inmediata, se realizará la reubicación *in situ* para asegurar su sobrevivencia, sobre todo cuando las actividades coincidan con el ciclo de lluvias.

V. LUGARES DE ACOPIO DE ESPECIES.

De manera inmediata a su extracción, los ejemplares serán acopiados en la misma superficie de los predios en los que se extraigan, donde serán mantenidos durante un breve tiempo anterior a su traslado al sitio de trasplante; simplemente se irán utilizando las áreas de donde se vaya realizando la remoción de vegetación.

De manera general, la ubicación de dichos sitios será la que se muestra a continuación:

Oficio N° SGPA/DGGFS/712/0789/17

Bitácora: 09/MA-0116/07/16

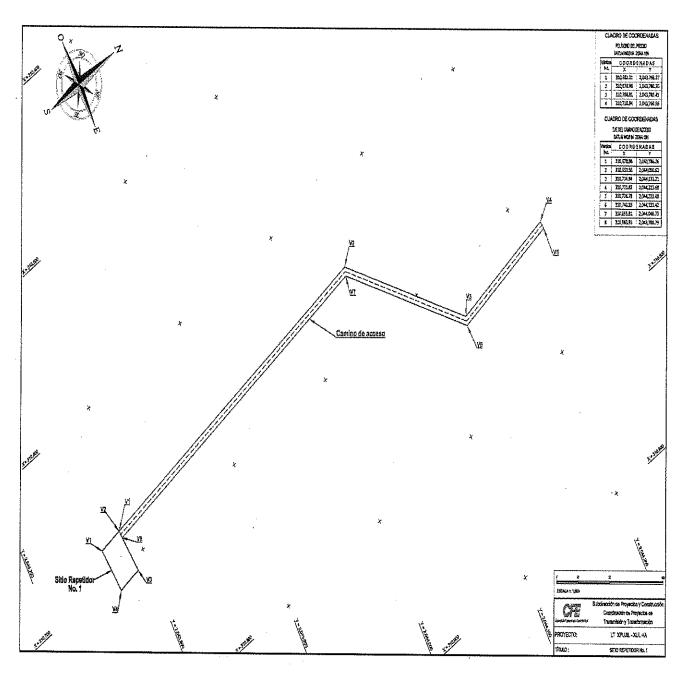


Figura 1. Ubicación general de los sitios de acopio de especies de flora (Sitio 1).

Oficio N° SGPA/DGGFS/712/0789/17

Bitácora: 09/MA-0116/07/16

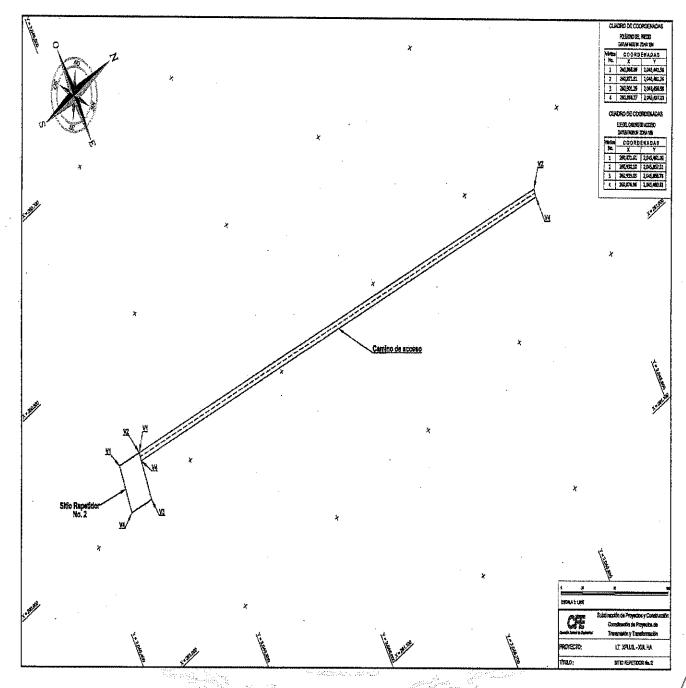


Figura 2. Ubicación general de los sitios de acopio de especies de flora (Sitio 2).

Oficio N° SGPA/DGGFS/712/0789/17

Bitácora: 09/MA-0116/07/16

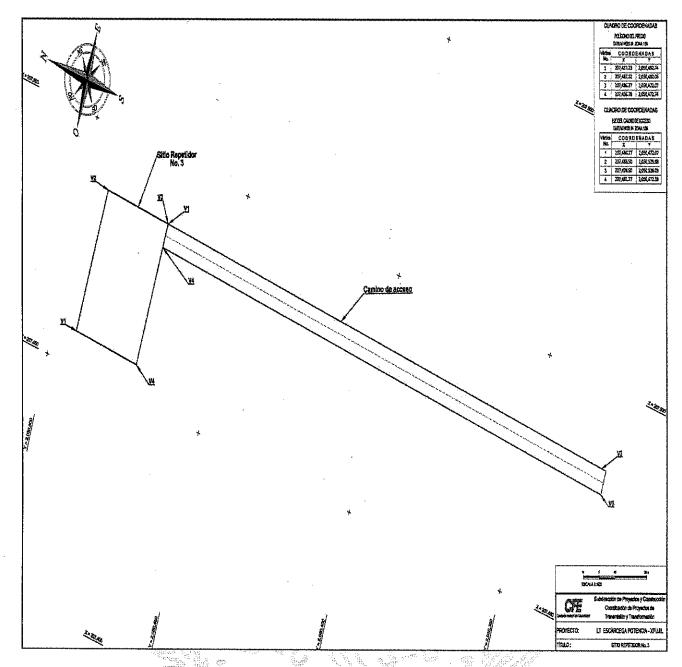
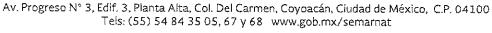


Figura 3. Ubicación general de los sitios de acopio de especies de flora (Sitio 3).

Oficio N° SGPA/DGGFS/712/0789/17

Bitácora: 09/MA-0116/07/16

Debido a que se trata de superficies relativamente pequeñas (400m² sin contar los caminos de acceso que varían en longitud) y se trabajará un sitio a la vez, será posible utilizar las mismas superficies para realizar el acopio de los individuos rescatados de manera anterior a su traslado sin afectar áreas aledañas.


Complementando a los planos presentados, se incluyen las tablas con las coordenadas de las superficies que se utilizarán para el acopio temporal de los ejemplares:

Polígono de acopio en los sitios.

	Poligono acop	io 1
1	310,681.11	2,043,766.37
2	310,678.98	2,043,786.26
3	310,708.81	2,043,789.45
4	310,710.94	2,043,769.56
	Polígono acop	io 2
1 ·	310,678.98	2,043,786,26
2 -	310,650.58	2,044,050.60
3	310,734.84	2,044,133.21
4	310,721.83	2,044,222.68
5	310,726.78	2,044,223.40
6	310,740.15	2,044,131.42
7	310,655.81	2,044,048.73
8 j <u>(</u>	310,683.95	2,043,786.79
	Poligono acop	io3
1	260,868.69	2,045,441.58
2.	260,871.61	2,045,461.36
3	260,901.29	2,045,456.98
4 💸	260,898.37	2,045,437.20
10000	Polígono acop	io 4
1	260,871.61	2,045,461.36
. 2	260,930,10	2,045,857.51
3	260,935.05	2,045,856.78
4	260,876.56	2,045,460.63
	Polígono acop	0.5
1 6	207 457.23	2,050,492.74
2	207,487.22	2,050,492.06
3	207,486.77	2,050,472.07
4	207,456.78	2,050,472.74
Service Projects	Poligono acop	io 6 process and a superior and a

Oficio N° SGPA/DGGFS/712/0789/17

Bitácora: 09/MA-0116/07/16

1	207,486.77	2,050,472.07
2	207,483.50	2,050,325.98
3	207,478.50	2,050,326.09
4	207,481.77	2,050,472.18

VI. LOCALIZACIÓN DE LOS SITIOS DE REUBICACIÓN.

El área de reubicación de las especies serán los terrenos de la Unidad de Manejo para la Conservación de la Vida Silvestre NCP Valentín Gómez Farías (Registro SEMARNAT-UMA-EX-0010-CAMP). Esta UMA se encuentra localizada en el ejido Valentín Gómez Farías, en el municipio de Calakmul en el estado de Campeche, aproximadamente a 4 kilómetros de la cabecera municipal, Xpujil.

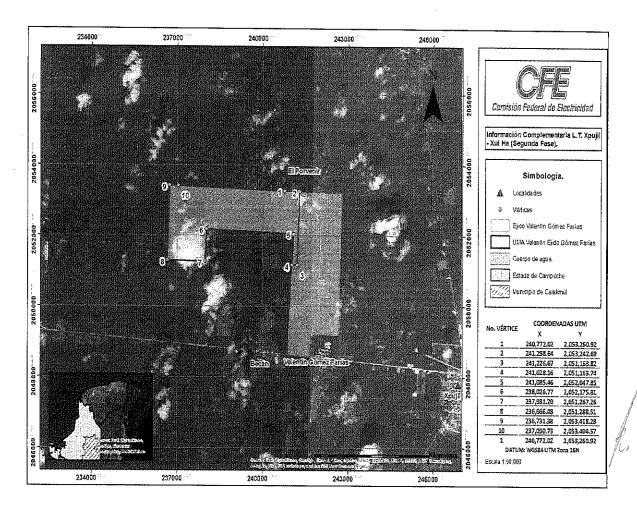
La Unidad de Manejo para la Conservación de la Vida Silvestre NCP Valentín Gómez Farías cuenta con una superficie de 1,400 hectáreas; la Unidad cuenta con un orquidiario en donde se conservan especies propias de la región, viveros, áreas de enriquecimiento de acahuales además del reconocimiento del propio ejido Valentín Gómez Farías y de las autoridades a nivel regional del esquema de pago de servicios ambientales en zonas bajo manejo. La Unidad también tiene 2 torres de observación para apoyar los esfuerzos de consolidar un uso no extractivo de la fauna y la flora mediante el ecoturismo.

La Unidad cuenta con las características físicas para la adecuación de los ejemplares, ya que se encuentra en la misma región que el proyecto pretendido, con el mismo clima, condiciones edafológicas y vegetación de selva mediana subperennifolia.

Las coordenadas de referencia de ubicación del polígono que conforma esta UMA se presentan a continuación:

Tabla. Coordenadas del sitio al que se trasladarán los ejemplares rescatados.

	Coorden	adas UTM
No. Vértice		Y
1	240,772.02	2,053,260.92
2	241,298,64	2,053,242.69
3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	241,226:67	2,051,163.82
4	241,028.16	2,051,163.74
5	241,085.46	2,052,047.85
6	238,026.77	2,052,175.81
7	237,981.20	2,051,267.26


Oficio N° SGPA/DGGFS/712/0789/17

Bitácora: 09/MA-0116/07/16

Tabla. Coordenadas del sitio al que se trasladarán los ejemplares rescatados.

No. Vértice	Coordenadas UTM							
140. VEI LICE	x	Y						
8	236,666.48	2,051,288.51						
9	236,731.38	2,053,418.28						
10	237,050.73	2,053,404.57						

De igual forma se presenta su ubicación en la cual se puede apreciar que esta UMA se encuentra próxima a la cabecera municipal de Calakmul, Xpujil.

Oficio N° SGPA/DGGFS/712/0789/17

Bitácora: 09/MA-0116/07/16

VII. ACCIONES A REALIZAR PARA EL MANTENIMIENTO Y SUPERVIVENCIA.

Acciones que permiten garantizar la supervivencia de las especies rescatadas.

Dentro de este aspecto, las acciones constarán básicamente de riego y atención en los días posteriores (3 a 10 días) al rescate y hasta el traslado a las áreas definitivas de reubicación.

- a) Riego. Se deberá realizar en las horas de menor insolación, por la mañana, muy temprano o bien ya entrada la tarde. El riego se puede efectuar con mangueras o utilizando cubetas o regaderas. Esta labor dependerá de la fuente de suministro con que se cuente y de la capacidad de transporte del agua. Por otra parte, la necesidad de riego depende del grado de arraigo que se haya conseguido en las plantas y de sí éstas representan una etapa de descanso vegetativo.
- b) Fertilización. De ser necesario se aplicarán abonos y o fertilizantes en las dosis pertinentes, que en este caso serían foliares.
- c) Atención fitosanitaria. Las plantas trasplantadas, se llevarán a cabo acciones de cuidados y limpieza (deshierbe), poda, con el fin de evitar la incursión de especies de trepadoras que dañen las plantas.

Con estas acciones se reducirá el riesgo de mortandad que de por si es alto dado el estrés al que son sometidas las plantas durante todo el proceso de rescate. Por lo cual también se está proponiendo la colecta de semillas las cuales serán incorporadas mediante siembra directa o entregadas a la dirección de la Reserva de la Biósfera, para su reproducción y reforestación con dichas especies.

VIII. PROGRAMA DE ACTIVIDADES.

Las actividades darán inicio una vez autorizado el cambio de uso del suelo y de acuerdo al programa de actividades de inicio de obra que presente el promovente y en los plazos que determine la Secretaría.

Tabla. Programa de actividades para el rescate y reubicación de especies de vegetación forestal.

Período		Años 3, 4 y 5 (semestres)					
Actividades	1 2	3 4	5 6	7 8	1 2	3 4	5 6
Localización y marcaje de los individuos por especie a rescatar.							
Delimitación de las áreas específicas de reubicación.							

Oficio N° SGPA/DGGFS/712/0789/17

Bitácora: 09/MA-0116/07/16

Tabla. Programa de actividades para el rescate y reubicación de especies de vegetación forestal.

Período	Años 1 y 2 (trimestres)					Años 3, 4 y 5 (semestres)								
Actividades	1	2	3	4	5	6	7	8	1	2	3	4	5	6
Colecta de semillas y esquejes, depende de la fenología de las especies y de la madurez de los propágulos.														
Rescate-Extracción de plantas.		rengra entes d									-		P	
Traslado a los sitios de reubicación o en su caso a vivero temporal.														
Reubicación en las áreas específicas de reubicación.		6 90											i	·
Preparación del terreno, apertura de cepas.		62 (Pİ) (S) PS (SI) (S	90 (15) 90 (6) 91 (4)							. 4				
Mantenimiento posterior al trasplante.							•							
Monitoreo de avances del rescate y de supervivencia en la reubicación.						h								
Informe de avances y resultados									7 (2) (2) (7 (4) (2) (4)					

IX. EVALUACIÓN DEL RESCATE Y REUBICACIÓN.

Posterior a las actividades de reubicación se realizarán visitas al sitio para verificar la sobrevivencia y la adecuada adaptación de los individuos en la zona de reubicación, y estado de los ejemplares reubicados en general, con lo que se establecerá un porcentaje de sobrevivencia general.

La aclimatación y el buen mantenimiento de las plantas en las áreas de reubicación, se denotará por varios rasgos: las hojas se yerguen normalmente, aparecen nuevas hojas y ramillas y éstas empiezan a lignificarse (endurecerse) y las raíces ocupan el volumen del recipiente de forma que la planta puede levantarse tomándola de la base del tallo sin sentir desgarre de raíces.

A partir de la ubicación de los individuos en las áreas señaladas anteriormente, se realizará un monitoreo a partir de que se concluya la reubicación. Durante este monitoreo se verificará la supervivencia de los individuos plantados. Se identificarán los individuos muertos o dañados (aquellos que no se hayan adaptado al cambio). De ser necesario se deberá de realizar y ejecutar de inmediato un programa de restitución de estas especies muertas, de manera que se cumpla con un 80% de supervivencia. La forma de calcular la supervivencia de las especies es la siguiente:

 $S = \mu 2 / \mu 1 \times 100$ (Según Krebs, 1989)

Oficio N° SGPA/DGGFS/712/0789/17

Bitácora: 09/MA-0116/07/16

Donde:

S.= Porcentaje de individuos vivos en un periodo determinado

 μ 2 = Núm. Individuos del segundo monitoreo μ 1= Núm. Individuos del primer monitoreo

Las actividades de monitoreo contemplan:

- Un monitoreo periódico por personal especializado (forestal o biólogo) para verificar los niveles de supervivencia de las especies durante dos meses después de efectuado el rescate y reubicación.
- De verificarse la mortandad de especímenes debe efectuarse la restitución de los ejemplares para obtener y conservar una supervivencia del 80%.
- El monitoreo se propone en tres etapas, la primera al finalizar el primer año de ejecución del rescate y reubicación, la segunda será al finalizar el segundo año y la tercera fase de monitoreo al quinto año.
- Se deberán realizar cuadrantes de al menos 400 m (20 m X 20 m), los cuales serán ubicados mediante coordenadas espaciales y realizar el conteo de los individuos vivos en relación al total sembrado y el número de individuos que se observen sanos y con buen vigor.

Por lo tanto, se tendrán dos indicadores:

- 1. Porcentajes de supervivencia.
- 2. Porcentaje de individuos sanos.

Estos indicadores deben contar con datos y presentar resultados por cada especie y por el total de ellas.

X. INFORME DE AVANCES Y RESULTADOS.

Se presentarán 10 informes de avances y resultados durante cinco años, un informe por semestre:

REQUERIMIENTOS GENERALES

Requerimientos específicos de personal.

La organización y capacitación del personal participante en el programa de rescate, se integrará de la siguiente manera:

• 1 Ingeniero forestal responsable de la aplicación y funcionamiento del programa.

Oficio N° SGPA/DGGFS/712/0789/17

Bitácora: 09/MA-0116/07/16

- 1 Biólogo corresponsable de la aplicación del programa.
- 6 peones (2 brigadas de trabajo).

Los documentos a generar durante y al final de los trabajos de campo son:

- Listado de número de individuos rescatados por especie.
- % de supervivencia por especie.
- Estado fitosanitario por especie.
- Actividades de reubicación.
- Actividades de mantenimiento.
- Estimación de vigorosidad de la plantación.
- Avance con respecto a la meta.
- Evidencia fotográfica.

ATENTAMENTE

EL DIRECTOR GENERAL

EMARNA

LA PROTECCIÓN AMBIENTAL

LIC. AUGUSTO MIRAFUENTES ESPINOSA DECONCERTA DECESTIÓN FORESTA Y DESERVE SERVIS

GRR/HHM/RIHM/VMHR

.